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ABSTRACT. New experimental technique for a determination of the stress intensity factor (SIF) and T-stress 
values is developed and verified. The approach assumes combining the crack compliance method and optical 
interferometric measurements of local deformation response on small crack length increment. Initial 
experimental information has a form of in-plane displacement component values, which are measured by 
electronic speckle-pattern interferometry at some specific points located near a crack tip. Required values of 
fracture mechanics parameters follow from the first four coefficients of Williams’ series. A determination of 
initial experimental data at the nearest vicinity of notch tip is the main feature of the developed approach. That 
is why it is not necessary to involve complex numerical models, which include global geometrical parameters, 
loading and boundary conditions of the object under study, in a stage of experimental data interpretation. An 
availability of high-quality interference fringe patterns, which are free from rigid-body motions, serves as a 
reliable indicator of real stress state around a crack tip. A verification of the technique is performed by 
comparing experimental results with analogous data of FEM modelling. Experimentally determined mode I SIF 
for DCB specimen with end crack is in 5 per cent agreement with the numerically simulated case. Proposed 
approach is capable of estimating an influence of the notch radius on fracture mechanics parameters. 
Comparing SIF and T-stress obtained for U-notches of different radius both in actual and residual stress field 
confirms this statement. 
 
KEYWORDS. Stress intensity factor; T-stress; crack compliance method; In-plane displacement components; 
Electronic speckle-pattern interferometry. 
 
 
 
INTRODUCTION  
 

xperimental determination of stress intensity factor (SIF) and T-stress for a crack of constant length under 
external load increment is of considerable current interest [1-8]. At the same time the crack compliance method is 
capable of SIF deriving by local crack length increasing under constant load conditions [9-10]. This presentation is 

devoted to a development and verification of new technique for a determination of SIF and T-stress values by combining 
the crack compliance method and optical interferometric measurements of local deformation response on small crack 
length increment. 
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MAIN PRINCIPALS AND RELATIONS  
 

odified version of the crack compliance method resides in recording interference fringe patterns, which 
correspond to a difference between two in-plane displacement component fields. Each field is referred to a 
crack of close but different length. The first exposure is made for a crack of initial length an-1 (see Fig. 1). Then 

initial crack length is increased by small increment Δan so that new total crack length becomes equal to an=an-1+Δan and 
the second exposure is performed. Required interference fringe patterns are visualized by numerical subtraction of two 
images recorded for two cracks [11]. Two interferograms, which are obtained by this way for thin plate with through edge 
crack of mode I, are shown in Fig. 2. Positive direction of x-axis in Fig. 1 and Fig. 2 coincides with a direction of the crack 
propagation. 
 

 
Figure 1: Polar co-ordinate system related to a crack tip and the notation adopted. 

 

 
                                                                  (a)                                                                                   (b) 

 

Figure 2: Specimen #3V. Interference fringe pattern obtained  in terms of in-plane displacement component u (a) and v (b). Initial 
crack length a4 = 7.18 mm with increment Δa5 = 1.81 mm 
 
Procedure of deriving required fracture mechanics parameters from interference fringe patterns is based on Williams’ 
formulation [12].  In-plane displacement field near a crack tip is expressed as an infinite series for each in-plane 
displacement component. When x-direction coincides with the crack line these series for mode I condition have the 
following form: 
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where u and v are in-plane displacement component in direction of x and y axis, respectively; μ is the Poisson’s ratio; E is 
the elasticity modulus; k = (3–μ)/(1+μ) for plane stress and k=(3–4μ) for plane strain conditions; An are constants to be 
determined; r and θ are radial and angular distance from the crack tip as it is shown in Fig. 1. 
Values of stress intensity factor (SIF) KI and T-stress T are connected with coefficients of infinite series (1) by the 
following way [7]: 
 

1 2IK A  , 24T A           (2) 
 

Generally initial experimental information represents a difference in absolute values of in-plane displacement components 
( , )nU r   and ( , )nV r   for two cracks of length na  and 1na  : 

 

1( , ) ( , ) ( , )n n nU r u r u r    , 1( , ) ( , )n n nV v r v r         (3) 
 

where 1 1( , ), ( , )n nu r v r    and ( , ), ( , )n nu r v r   are absolute values of in-plane displacement components in a point with 

polar co-ordinates ( , )r  for a crack of 1na   and na length, respectively. 
Eq. (3) are valid for any point belonging to the proximity of crack tip located at point n. But right hand sides of Eq.  (3) 
include relative values of displacement components, which can not be directly used for a determination of An-values from 
decomposition (1). The key point of the developed approach resides in the fact that each interference fringe pattern of 
type shown in Fig. 2 contains a set of specific points located at a crack border immediately. Absolute values of in-plane 
displacement components and then coefficients An from formulae (1) for a crack of na length can be determined at these 
points.  
First, specific points are located along the crack line between point n–1 and point n where displacement component 

1( , )nv r   equals to zero before making a crack length increment. Thus, interference fringe pattern shown in Fig. 2b allows 

determining absolute values of ( , )nv r  -component for each point with polar co-ordinates 0 ≤ r ≤ Δan and θ=π. 
Developed approach employs four first coefficients of series (1) for deriving required fracture mechanics parameters. A 
distribution of ( , )nv r  -displacement component along the crack line (θ=π, see Fig. 1) is expressed as: 
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Relation (4) shows that deriving KI value from Eq. (3) demands a determination of ( , )nv r  -values at two points belonging 
to the interval 0 ≤ r ≤ Δan, θ=π, as minimum. It is conveniently to use two points with polar coordinates (r =Δan, θ=π) and 
(r=Δan/2, θ=π). Substituting these co-ordinates into relation (4) forms a system of linear algebraic equations, a solution of 
which is: 
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where An1 and An3 are coefficients of decomposition (1) for a crack of an length; Δvn-1 = 2vn(r=Δan, θ=π) and Δvn-0.5 = 
2vn(r=Δan/2, θ=π) are crack opening values from Eq. (4), which have to be experimentally determined. SIF value for a 
crack of an length follows from combining the first relations from Eqs. (2) and (5): 
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Taking into account only the first term from Eq. (1) leads to well-known Westergaard relation: 
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A characterisation of T-stress values T is based on a determination of u-displacement component directed along x-axis. A 
distribution of ( , )nu r  -displacement component for points belonging to the crack line (θ=π, see Fig. 1), which 
corresponds to the second and the fourth terms of infinite series (1), is expressed as: 
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Absolute value of u-component for a crack of an length can be again obtained at point n –1 with polar co-ordinates r=Δan 
and θ=π because at this point 1( , ) 0nu r   . A substitution of nr a   and 1( , )n n nu r a u       in Eq. (8) and taking 
into account the first from relations (3) lead to the following relation:   
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            (9) 

 

Eq. (9) gives us the first equation essential for a determination of T-stress value T when displacement component value un-

1 is experimentally obtained. It should be noted that all experimental parameters needed for relations (5)-(7) and Eq. (9) 
can be derived from two interferograms, which correspond to Δan crack length increment. 
A formulation of the second required equation demands involving interference fringe pattern, which corresponds to crack 
length increasing from point n to point n+1 by Δan+1 increment (see Fig. 1). For point n+1 with polar co-ordinates 
(r =Δan+1, θ=0) the first Eq. (4) can be written as: 
 

1 1 1 1 1 1( ; 0) ( ; 0) 0 ( ; 0)n n n n n n n nU u r a u r a u r a u                         (10) 
 

Combining relations (1) and (10) gives: 
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where 1nu   is the absolute value of ( , )nu r  displacement component at point n+1 (see Fig. 1). Relation (11) represents the 
second equation essential for a determination of T-stress because the values of coefficients A1 and A3 are already known 
from formulae (5) Note that a value of 1nu   has to be experimentally derived from interference fringe pattern of type 
shown in Fig. 2a, which are recorded for Δan+1 crack length increment. If an estimation of T-stress value is restricted by 
coefficient An2 only, the following simplified formula is valid: 
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The T-stress value in Eq. (12) can be determined by using interference fringe pattern of type shown in Fig. 2a recorded 
for crack length increment Δan only. 
Electronic speckle-pattern interferometry (ESPI) serves for a determination of in-plane displacement components [11]. 
Well-known optical system with normal illumination with respect to plane object surface and two symmetrical observation 
directions is used. When a projection of illumination directions onto plane surface of the investigated object coincides 
with ξ-direction, interference fringe pattern is described as: 
 

2sin
d N





           (12) 

 

where dξ  is in-plane displacement component in ξ-direction; N = 1; 2; 3, … are the absolute fringe orders;  = 0.532 
μm is the wavelength of laser illumination;  = 45 degrees is the angle between inclined illumination and normal 
observation directions. When ξ-direction coincides with x-axis and y-axis displacement component u and v can be derived 
accordingly to formula (13), respectively. 
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METROLOGICAL VERIFICATION  
 

etrological verification of the developed approach is performed by using specially designed specimen #3V made 
from 2024 aluminium alloy (E = 74000 MPa, μ = 0.33) shown in Fig. 3. Working part of this specimen is a thin 
plate of dimensions 120x48x5 mm3. A U-notch of length a0 = 20 mm is initially made in the middle of the 

shortest side in a direction of the symmetry cross-section. The specimen is loaded by transverse force directed 
orthogonally to the notch line as it is shown in Fig. 3. Step-by-step notch increase process is firstly performed by narrow 
jewellery saw of width b1 = 0.3 mm (notch radius ρ1~0.15 mm). A scheme of the experiment involved resides in the 
following. External transverse load Pn1 is applied to the specimen. The first exposure is made for a notch of current length 
an-1. Then notch length is increased by small increment Δan and the second exposure is made for a notch of the final length 
an = an-1 + Δan. During a process of notch length increasing a value of acting force is slightly decreased to Pn2 due to a 
compliance of the force gage. Two interference fringe patterns recorded for the 4th notch length increment are shown in 
Fig. 2. 
Interference fringe patterns are recorded for 7 notch length increments starting from initial notch length a0 = 20 mm up 
to a0+an = 32.9 mm. Experimental data are obtained for the same loading conditions: Pn1 = 0.930 kN and Pn2 = 0.846 kN. 
Dependences of SIF KI and T-stress T values from total notch length constructed accordingly to relation (6) and relations 
(9)-(11), respectively, are shown in Fig. 4. Note that SIF values obtained by formula (6) coincide with analogous data from 
formula (7) within 5 per cent because An3 values are practically equal to zero for all steps considered. This fact gives us a 
capability of reliable comparing experimentally obtained SIF values with analogous results of numerical simulation on a 
base of NASTRAN computer codes.  

 
 

Figure 3: Drawing Specimen #3V and a scheme of its loading. 
 

 
(a) (b)

 

Figure 4: Dependencies of SIF KI (a) and T-stresses T (b) from total notch length for specimen #3V and specimen #4V. 
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Comparing the results of two types is performed for the fourth notch length increment with total notch length a0+a4 = 
27.2 mm. Finite element mesh consists of 162000 plane shell elements of CQUAD 4 type. Boundary conditions 
correspond to real geometry of the specimen shown in Fig. 3. Local area including a notch tip is simulated by two-
dimensional notch tip element CRAC2D. This element is capable of SIF calculation accordingly to formula (7) only. 

Numerical SIF value 6.48FEM
IK MPa m coincides with analogous experimental value 4 6.14IK MPa m  within five 

per cent. This result proves a high accuracy and reliability of the developed approach. 
 
 
INFLUENCE OF THE NOTCH WIDTH ON FRACTURE MECHANICS PARAMETERS  
 

eveloped approach is capable of determining fracture mechanics parameters for notches as well as cracks in both 
actual and residual stress field. It is also possible to estimate an influence of notch radius on SIF and T-stress 
values obtained through the use of formula (5) and relations (9)-(11), respectively. The first step in this way is 

made for actual stress field in specimen #4V, geometrical parameters and loading conditions of which completely coincide 
with scheme shown in Fig. 3. The main difference resides in using a saw of width b3 = 1.0 mm (notch radius ρ3~0.50 mm) 
for incremental crack length increasing. Dependences of SIF KI and T-stress T values obtained accordingly to formula (6) 
and relations (9)-(11) from total notch length for specimen #4V are also shown in Fig. 4. A difference in SIF values 
reaches 10 per cent with notch width increasing leads to SIF decreasing. Average T-stress values calculated for the first six 
steps are Tnav = –67.2 MPa and Tnav = –76.8 MPa for specimens #3V and #4V, respectively. Thus, notch width increasing 
gives a decrease of negative T-stress values by 12.5 per cent. 
A study of notch increase in residual stress field is performed for two welded thin plates of dimensions 200x100x4 mm3 
made from aluminium alloy (E=72000 MPa, μ=0.33). These plates are denoted as specimen #015 (notch width b2 = 0.6 
mm, notch radius ρ2~0.30 mm) and specimen #016 (notch width b1 = 0.3 mm, notch radius ρ1~0.15 mm). Weld seam of 
lengths 100 mm coincides with one from symmetry cross-section of each specimen. Notches in both specimens are 
increased from a centre of the weld along the second symmetry cross-section orthogonally to the weld direction. 
Preliminary determination of maximal residual stress values σymax acting along the weld in both specimens serves for 
estimating an identity of residual stress fields. These values determined at points with co-ordinate x = 9 mm equal to σymax 
= 130 and σymax = 139 MPa for Specimen #015 and #016, respectively. Data are obtained by combining the hole drilling 
method and ESPI. Holes are drilled in specimen’s area, which does not contain a notch. 

 

(a) (b)
 

Figure 5: Dependences of SIF KI (a) and T-stress T (b) values form total notch length. 
 
Experimental technique and a procedure of SIF and T-stress determination completely corresponds to the approach 
described above. Dependences of SIF KI and T-stress T values from total notch length are shown in Fig. 5a and Fig. 5b, 
respectively. These results show that co-ordinate of points where KI = 0 and T = 0 do not depend on the notch radius and 
correspond to notch length aS = 16÷18 mm. Maximal SIF values for specimen #016 (KI=17.8 MPa·m0.5) and specimen 
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#015 (KI=14.3 MPa·m0.5) differ by 20 per cent. A difference in maximal values of T-stress for specimen #016 (T = –188 
MPa) and specimen #015 (T = –120 MPa) reaches 30 per cent. Distributions of KI in Fig. 5a are constructed by using 
formula (6). T-stresses shown in Fig. 5b are derived on a base of relations (9)-(11). It should be specially noted that 
formula (12) gives T = 0 for both specimens and any notch length increment.  
 
 
CONCLUSIONS 
 

ew technique for a determination of fracture mechanics parameters is developed. Its essence resides in a 
measurement of local deformation response on small crack length increment by electronic speckle-pattern 
interferometry. Obtained experimental information is capable of deriving the first four coefficients of Williams’ 

asymptotic series and further calculations of stress intensity factor and T-stress values. Developed approach allows 
estimating dependencies of fracture mechanics parameters from a real width of the U-notch and/or notch radius. 
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