Issue 51

N. Benachour et alii, Frattura ed Integrità Strutturale, 51 (2020) 45-51; DOI: 10.3221/IGF-ESIS.51.04 51 [3] Bauss, H.P., Lieurade, G., Sanz, M.T. (1977). Correlation between the fatigue crack initiation at the root of notch and low-cycle fatigue date: Flaw growth and fracture. ASTM STP 631, pp. 96-111. DOI: 10.1520/STP35534S. [4] DuQuesnay, D.L., Topper, T.H., Yu, M.T., (1986), The effect of notch radius on the fatigue notch factor and the propagation of short cracks: The behavior of short fatigue cracks, EGF Pub, Edited by K.J. Miller and E.R. De Los Rios, Mechanical Engineering Publications, London, pp. 323-335. [5] Schwob, C., Chambon, L., Ronde-Oustau, F. (2006). Fatigue crack initiation in stress concentration areas. In Proceedings of the 16th European Conference of Fracture, Gdoutos, E.E. (Ed.), Alexandroupolis, Greece. [6] Jack, J.R., Price, A.T., The initiation of fatigue cracks from notches in mild steel plates, International Journal of Fracture Mechanics, 6(4), pp. 401-409. DOI: 10.1007/BF00182628. [7] Hammouda, M.M.I., El-Batanony, I.G., (2010), Notch FCI life under constant amplitude uniaxial loads, International Journal of Structural Integrity 1, pp. 12-19. DOI: 10.1108/17579861011023766 . [8] Devaux, J.C., D’Escatha, Y., Rabbe, P., Pellissier-Tanon, A. (1979). A criterion for analysing fatigue crack initiation in geometrical singularities. Transaction of the 5th International Conference on Structural Mechanics in Reactor Technology, Berlin. [9] Batisse, R., Meziere, Y., Mokhdani, C., Pineau, A. (1995). A fatigue crack initiation criterion for the assessment of the residual life of gas transmission pipelines with gouge only or gouge in dent defects. EPRG/PRC 10th Biannual Joint. Technical Meeting on Pipelines Research Proceeding, Cambridge, UK, 1, pp. 1-11. [10] Neuber, H. (1961). Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. Journal of Applied Mechanis 28(4), pp. 544-551. DOI: 10.1115/1.3641780. [11] Molski, K., Glinka, G. (1981). Method of elastic plastic stress and strain calculation at a notch root. Materials Sciences Engineering 50, pp. 93-100. DOI: 10.1016/0025-5416(81)90089-6 [12] Rice, J.R., (1968), Mathematical analysis in the mechanics of fracture. Fracture II. Liebowitz pp 255-264. [13] Topper, T.H., Wetzel, R.M., Morrow, J. (1967). Neuber's rule applied to fatigue of notched specimens. Report No, NAEC-ASL-1114 June 1967, U.S. Naval Air Engineering Center Philadelphia. Pennsylvania, USA. [14] Ranganathan, N., Aldroe, H., Lacroix, F., Chalon, F., Leroy, R., Tougui, A. (2011). Fatigue crack initiation at a notch. International Journal of Fatigue 33(3), pp. 492–499. DOI: 10.1016/j.ijfatigue.2010.09.007 [15] Xiulin, Z. (1986), A further study on fatigue crack initiation life - mechanical model for fatigue crack initiation, International Journal of Fatigue 8(1), pp 17-21. DOI: 10.1016/0142-1123(86)90042-3 [16] Ngiau, C., Kujawski, D. (2001). Sequence effects of small amplitude cycles on fatigue crack initiation and propagation in 2024-T351 Aluminum. International Journal of Fatigue 23, pp. 807–815. DOI: 10.1016/S0142-1123(01)00033-0 [17] Jurcevic, R., DuQuesnay, D.L., Topper, T.H., Pompetzki, M.A. (1990). Fatigue damage accumulation in 2024-T351 aluminium subjected to periodic reversed overloads. International Journal of Fatigue 12(4), pp 259-266. DOI: 10.1016/0142-1123(90)90453-L [18] Pompetzki, M.A., Topper, T.H., DuQuesnay, D.L., Yu, M.T. (1990). Effect of compressive underloads and tensile overloads on fatigue damage accumulation in 2024-T351 aluminum. Journal of Testing and Evaluation, 18(1), pp. 53-61. DOI: 10.1520/JTE12451J [19] Creager, M., Paris, P.C. (1967). The elastic field near tip for blunt crack. International Journal of Fracture 3, p. 247. DOI: 10.1007/BF00182890 [20] Agbessi, K., Saintier, N., Palin-Luc, T., (2013), High cycle multiaxial fatigue crack initiation: experimental observations and microstructure simulations. 21ème Congrès Français de Mécanique, Bordeaux. [21] Zhang, J., Johnston, J., Chattopadhyay, A. (2017). Physics-based multiscale damage criterion for fatigue crack prediction in aluminium alloy. Fatigue & Fracture of Engineering Materials & Structures 37(2), pp. 119-131. DOI: 10.1111/ffe.12090 [22] Murakami, Y. (1987). Stress intensity factors handbook, Pergamon Press, Oxford, 1, pp. 9-17. [23] Náhlík, L., Huta, P. and Štegnerová, K. (2014). Critical applied stresses for a crack initiation from a sharp V- notch, Frattura ed Integrità Strutturale, 8(30), pp. 55-61. DOI: 10.3221/IGF-ESIS.30.08 [24] Han, Q., YaruWang, Y., Yin, Y., Wang, D. (2015). Determination of stress intensity factor for mode I fatigue crack based on finite element analysis. Engineering Fracture Mechanics, 138, pp. 118-126. DOI: 10.1016/j.engfracmech.2015.02.019 [25] Ricardo, L. C. (2017). Crack Propagation by Finite Element Method, Frattura ed Integrità Strutturale, 12(43), pp. 57-78. DOI: 10.3221/IGF-ESIS.43.04 [26] Benachour, M., Hadjoui, A., Benguediab, M., Benachour, N. (2010). Stress ratio effect on fatigue behavior of aircraft aluminum alloy 2024 T351. MRS Proceedings, 1276, 7. DOI: 10.1557/PROC-1276-7.

RkJQdWJsaXNoZXIy MjM0NDE=