Issue 51

E. Mousavian et alii, Frattura ed Integrità Strutturale, 51 (2020) 336-355; DOI: 10.3221/IGF-ESIS.51.25 355 [30] Bui, T.T., Limam, A., Sarhosis, V. and Hjiaj, M. (2017). Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions, Eng. Struct., 136, pp. 277-294. DOI: 10.1016/j.engstruct.2017.01.020 [31] Simon, J. and Bagi, K. (2016). Discrete element analysis of the minimum thickness of oval masonry domes, Int. J. Archit. Herit., 10(4), pp. 457-475. DOI: 10.1080/15583058.2014.996921 [32] Cannizzaro, F., Pantò, B., Caddemi, S. and Caliò, I. (2018). A Discrete Macro-Element Method (DMEM) for the nonlinear structural assessment of masonry arches, Eng. Struct., 168, pp. 243-256. DOI: 10.1016/j.engstruct.2018.04.006 [33] Giresini L., Sassu M., Butenweg C., Alecci V. and De Stefano M. (2017). Vault macro-element with equivalent trusses in global seismic analyses, Earthq. Struct., 12(4), pp. 409-23. DOI: 10.12989/eas.2017.12.4.409 [34] Giresini L., Casapulla C., Denysiuk R., Matos J and Sassu M. (2018). Fragility curves for free and restrained rocking masonry façades in one-sided motion, Eng. Struct., 164, pp. 195-213. DOI: 10.1016/j.engstruct.2018.03.003 [35] Giresini L., Sassu M. and Sorrentino L. (2018). In situ free-vibration tests on unrestrained and restrained rocking masonry walls, Earthq. Eng. Struct. D., 47(15), pp. 3006-3025. DOI: 10.1002/eqe.3119 [36] Gilbert, M., Casapulla, C. and Ahmed, H.M. (2006). Limit analysis of masonry block structures with non-associative frictional joints using linear programming, Comput. Struct., 84(13-14), pp. 873-887. DOI: 10.1016/j.compstruc.2006.02.005 [37] Casapulla, C. and Argiento, L.U. (2018). In-plane frictional resistances in dry block masonry walls and rocking-sliding failure modes revisited and experimentally validated, Compos. Part B-Eng., 132, pp. 197-213. DOI: 10.1016/j.compositesb.2017.09.013 [38] Liu, H., Liu, P., Lin, K. and Zhao, S. (2016). Cyclic behavior of mortarless brick joints with different interlocking shapes, Materials, 9(3), art. no. 166. DOI: 10.3390/ma9030166 [39] Totoev, Y. (2015). Design procedure for semi interlocking masonry, Journal of Civil Engineering and Architecture, 9, pp. 517-525. DOI: 10.17265/1934-7359/2015.05.003 [40] Hossain, M.A., Totoev, Y. and Masia, M.J. (2016). Friction on mortar-less joints in semi interlocking masonry. Proc. 16th International Brick and Block Masonry Conference (IBMAC 2016) Padova (Italy), pp. 1635-1643. [41] Pantò, B., Silva, L., Vasconcelos, G. and Lourenço, P.B. (2019). Macro-modelling approach for assessment of out-of- plane behavior of brick masonry infill walls, Eng. Struct., 181, pp. 529-549. DOI: 10.1016/j.engstruct.2018.12.019 [42] Dyskin, A.V., Pasternak, E. and Estrin, Y. (2012). Mortarless structures based on topological interlocking, Front. Struct. Civ. Eng., 6(2), pp. 188-97. DOI: 10.1007/s11709-012-0156-8 [43] Estrin, Y., Bréchet, Y., Dunlop, J. and Fratzl, P. (2019). Architectured Materials in Nature and Engineering, Springer Nature Switzerland AG. [44] Ali, M., Gultom, R. J. and Chouw, N. (2012). Capacity of innovative interlocking blocks under monotonic loading, Constr. Build. Mater., 37, pp. 812-821. DOI: 10.1016/j.conbuildmat.2012.08.002 [45] Fang, D. and Mueller, C.T. (2018). Joinery connections in timber frames: analytical and experimental explorations of structural behavior, Proc. Annual Symposium of the International Association for Shell and Spatial Structures (IASS), pp. 1-8. [46] MATLAB, (2019) https://www.mathworks.com/help/optim/ug/fminimax.html.

RkJQdWJsaXNoZXIy MjM0NDE=