Issue 51

M. S. Bennouna et alii, Frattura ed Integrità Strutturale, 51 (2020) 254-266; DOI: 10.3221/IGF-ESIS.51.20 266 [4] Lee, H.R., Sutcliffe, M.P.F. (2004). Finite element modelling of the evolution of surface pits in metal forming processes, J Mater Proc Technol, pp. 391–396. DOI: 10.1016/S0924-0136(02)00722-7. [5] Kim, T.S., Kuwamurab, H. (2007). Finite element modeling of bolted connections in thin-walled stainless steel plates under static shear. Thin-Walled Struct, pp.407–421. DOI: 10.1016/j.tws.2007.03.006 [6] Lopesa, A.B., Barlatb, F., Gracioc, J.J., Duarted, J.F.F., Rauch,e E.F. (2003). Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear. Int J Plast, pp.1–22. DOI: 10.1016/S0749-6419(01)00016-X. [7] Prasad G.V., Goerdeler M., Gottstein G. (2005). Work hardening model based on multiple dislocation densities, Mater Sci Eng, pp. 231–233. DOI: 10.1016/j.msea.2005.03.061. [8] Bardenhagen, S.G., Stout, M.G., Gray, G.T. (1997). Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials, Mechanics of Materials, pp. 235-253. DOI: 10.1016/S0167-6636(97)00007-0. [9] Frank, G.J., Brockman, R.A. (2001). A viscoelastic-viscoplastic constitutive model for glassy polymers, International Journal of Solids and Structures, pp. 5149-5164. DOI: 10.1016/S0020-7683(00)00339-5. [10] Colak, O.U. (2005). Modelling deformation behaviour of polymers with viscoplasticity theory based on overstress, International Journal of Plasticity, pp. 145-160. DOI: 10.1016/j.ijplas.2004.04.004. [11] Aour, B. (2007). Investigation of ECAE process of semi crystalline polymers by a finite element and a coupled boundary element-finite element approach, Thesis of doctorat in mechanical engineering, Université des Sciences et de la Technologie d'Oran, Algérie. [12] Aour, B., Zairi, F., Nait-Abdelaziz, M., Gloaguen, J.M., Rahmani, O., Lefebvre, J.M. (2008). A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer, International Journal of Mechanical Sciences, pp. 589-602. DOI: 10.1016/j.ijmecsci.2007.07.012. [13] Aour, B., Mitsak, A. (2016). .Analysis of plastic deformation of semi-crystalline polymers during ECAE process using 135° die, Journal of Theoritical and Applied Mechanics, 54(1), pp. 263-275. DOI: 10.15632/jtam-pl.54.1.263. [14] Mitsak, A. (2017). Contribution à la modélisation du comportement des polymères solides au cours du processus d’extrusion angulaires à égales sections, Thesis of doctorat in mechanical engineering ENPOran Algeria [15] Draï, A., Aour, B. (2013). Analysis of plastic deformation behavior of HDPE during high pressure torsion process, Engineering Structures, pp. 87–93. DOI: 10.1016/j.engstruct.2012.06.033. [16] Mckenzie, P.W.J., Lapovok, R., Estrin, Y. (2007). The influence of back pressure on ECAP processed AA 6016: modeling and experiment, Acta Mater, pp. 2985–2993. DOI: 10.1016/j.actamat.2006.12.038. [17] Hosseini, E., Kazeminezhad, M. (2008). A hybrid model on severe plastic deformation of Copper, Compute Mater Sci, pp. 1107–1115. DOI: 10.1016/j.commatsci.2008.07.024. [18] Aretz, H., Luce, R., Wolske, M., Kopp, R., Goerdeler, M., Marx, V. (2000). Integration of physically based models into FEM and application in simulation of metal forming processes, Modell Simul Mater Sci Eng, pp.881–891. DOI: 10.1088/0965-0393/8/6/309.

RkJQdWJsaXNoZXIy MjM0NDE=