Issue 42

M. Olzak et alii, Frattura ed Integrità Strutturale, 42 (2017) 46-55; DOI: 10.3221/IGF-ESIS.42.06 55 R EFERENCES [1] Kaneta, M., Murakami, Y., Propagation of Semi-Elliptical Surface Cracks in Lubricated Rolling/Sliding Eliptical Contact, Journal of Tribology, Transaction of the ASME, 113 (1991) 270-275. DOI: 10.1115/1.2920616. [2] Bower, A.F., The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks, Journal of Tribology, Transaction of the ASME, 110 (1988) 704-711. DOI: 10.1115/1.3261717. [3] Olzak, M., Stupnicki, J, Wójcik, R., Numerical analysis of 3D crack propagation in raill-wheel contact zone, Proc. of Int. Conf. on Rail Quality and Maintenance for Modern Railway Operation, Deft, (1992) 385-395. DOI: 10.1007/978-94-015-8151-6_31. [4] Stress Analysis of Rail Rolling Contact Fatigue – The European Raill Research Institute, Utreht, The Netherlands, Final Raport, Rp No 19 (1996). [5] Olzak, M., Stupnicki, J., Numerical study of Stress Intensity Factors for cracks in raceways with the experimentally determined interaction between crack faces, Computational Methods in Contact Mechanics V, WITPRESS, (2001) 253-262 [6] Rail rolling contact fatigue – The European Rail Research Institute, Utreht, The Netherlands, Annual Report –1993. [7] Bogdański, S., Olzak, M.. Stupnicki, J., Influence of liquid interaction on propagation of rail contact fatigue cracks, Proc. of the 2 nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel Systems, Budapest, (1996) 134- 143. [8] Glodež, S., Potočnik, R., Flašker, J., Zafošnik, B., Numerical modelling of crack path in the lubricated rolling–sliding contact problems, Engineering Fracture Mechanics, 75 (2008) 880–891. DOI:10.1016/j.engfracmech.2007.02.001. [9] Fletcher, D.I, Hyde, P., Kapoor, A., Modelling and full-scale trials to investigate fluid pressurisation of rolling contact fatigue cracks, Wear 265 (2008) 1317–1324. DOI:10.1016/j.wear.2008.02.025. [10] Makino, T., Kato, T., Hirakawa, K., The effect of slip ratio on the rolling contact fatigue property of railway wheel steel, International Journal of Fatigue, 36 (2012) 68–79. DOI:10.1016/j.ijfatigue.2011.08.014. [11] Dallago, M., Benedetti, M., Ancellotti, S., Fontanari, V., The role of lubricating fluid pressurization and entrapment on the path of inclined edge cracks originated under rolling–sliding contact fatigue: Numerical analyses vs. experimental evidences, International Journal of Fatigue, 92 (2016) 517–530. DOI:10.1016/j.ijfatigue.2016.02.014. [12] Ancellotti, S., Benedetti, M., Dallago, M., Fontanari, V., Fluid Pressurization and Entrapment Effects on the SIFs of Cracks produced under lubricated Rolling-Sliding Contact Fatigue, Procedia Structural Integrity, 2 (2016) 3098–3108. DOI: 10.1016/j.prostr.2016.06.387. [13] Balcombe, R., Fowell, M.T., Olver, A.V., Ioannides, S., Dini, D., A coupled approach for rolling contact fatigue cracks in the hydrodynamic lubrication regime: The importance of fluid/solid interactions, Wear, 271 (2011) 720– 733. DOI:10.1016/j.wear.2011.02.005. [14] Tribology Handbook, Edited by M.J.Aeale, Butterworths, London, (1973). [15] Pyrzanowski, P., Estimation and consequences of the crack thickness parameter in the assessment of crack growth behaviour of "squat" type cracks in the rail-wheel contact zone, Engineering Fracture Mechanics, 74(16) (2007) 2574- 2584. DOI: 10.1016/j.engfracmech.2006.11.017.

RkJQdWJsaXNoZXIy MjM0NDE=