Issue 42

M. Kowalski, Frattura ed Integrità Strutturale, 42 (2017) 85-92; DOI: 10.3221/IGF-ESIS.42.10 92 R EFERENCES [1] Acarer, M., Demir, B., An investigation of mechanical and metallurgical properties of explosive welded aluminum– dual phase steel, Materials Letters, 62 (2008) 4158–4160. [2] Acarer, M., Gülenç, B., Findik, F., Investigation of explosive welding parameters and their effects on microhardness and shear strength, Materials & Design, 24 (2003) 659–664. [3] Akbari-Mousavi, S.A.A., Barrett, L.M., Al-Hassani, S.T.S., Explosive welding of metal plates, Journal of Materials Processing Technology, 202 (2008) 224–239. [4] Akbari Mousavi, S.A.A., Farhadi Sartangi, P., Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel, Materials & Design,. 30 (2009) 459–468. [5] Akbari Mousavi, S.A.A., Sartangi, P.F., Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite, Materials Science and Engineering: A, 494 (2008) 329–336. [6] Čižek, L., Ostroushko, D., Szulc, Z., Molak, R., Pramowski, M., Properties of sandwich me-tals joined by explosive cladding method, Archives of Materials Science and Engineering, (2010) 21–29. [7] Crossland, B., Explosive welding of metals and its application, Clarendon Press, (1982). [8] Ferjutz, K., Davis, J.R., ASM Handbook: Volume 6: Welding, Brazing, and Soldering, 10th ed., ASM International, (1993). [9] Findik, F., Recent developments in explosive welding, Materials & Design, 32 (2011) 1081–1093. [10] Karolczuk, A., Kluger, K., Kowalski, M., Żok, F., Robak, G., Residual Stresses in Steel-Titanium Composite Manufactured by Explosive Welding, Materials Science Forum, 726 (2012) 125–132. [11] Karolczuk, A., Kowalski, M., Structural and Fatigue Properties of Titanium-Steel Bimetallic Composite Obtained by Explosive Welding Technology, Key Engineering Materials, 592-593 (2013) 594–597. [12] Karolczuk, A., Kowalski, M., Bański, R., Żok, F., Fatigue phenomena in explosively welded steel–titanium clad components subjected to push–pull loading, International Journal of Fatigue, 48 (2013) 101–108. [13] Marciniak, Z., Rozumek, D., Models of initiation fatigue crack paths proposed by Macha, Fracture and Structural Integrity, 9(34) (2015) 1-10. DOI 10.3221/IGF-ESIS.34.01. [14] Niesłony, A., Böhm, M., Determination of Fatigue Life on the Basis of Experimental Fatigue Diagrams under Constant Amplitude Load with Mean Stress, Materials Science Forum, 726 (2012) 33–38. [15] Prażmowski, M., Paul, H., Rozumek, D., Marcisz, E., Influence of the Microstructure near the Interface on the Fatigue Life of Explosively Welded (Carbon Steel)/Zr Clads, Key Engineering Materials, 592-593 (2013) 704–707. [16] Rinehart, J.S.P. J., Explosive Working of Metals, Pergamon Press, (1963). [17] Sołtysiak, R., Boroński, D., Karolczuk, A., Kowalski, M., Experimental Study of Non-Uniform Distribution of Basic Mechanical Parameters in Steel-Titanium Bimetal, Solid State Phenomena, 224 (2014) 192–197. [18] ASTM E2207 - 02 Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular Specimens, ASTM International, (2013).

RkJQdWJsaXNoZXIy MjM0NDE=