Issue 41

J. Toribio et alii, Frattura ed Integrità Strutturale, 41 (2017) 62-65; DOI: 10.3221/IGF-ESIS.41.09 65 0.0 5.0 10 -8 1.0 10 -7 1.5 10 -7 2.0 10 -7 2.5 10 -7 3.0 10 -7 3.5 10 -7 0 15 30 45 da/dN (m/ciclo) α 0 (º) Figure 4 : Fatigue crack growth rate as a function of the deflection angle of the kink. C ONCLUSIONS racks with a deflected kink in a plate subjected to remote tensile loading exhibit plastic crack advance in mode I with retarded fatigue crack growth when compared with a fully straight crack (with no kink). The increment of the crack deflection angle increases the retardation effect. A CKNOWLEDGEMENT he authors wish to acknowledge the financial support provided by the following Spanish Institutions: MICYT (Grant MAT2002-01831), MEC (Grant BIA2005-08965), MICINN (Grant BIA2008-06810), MINECO (Grant BIA2011-27870) and JCyL (Grants SA067A05, SA111A07 and SA039A08). R EFERENCES [1] Toribio, J., Matos, J.C., González, B., A macro- and micro-approach to the anisotropic fatigue behaviour of hot-rolled and cold-drawn pearlitic steel, Eng. Fract. Mech., 123 (2014) 70–76. DOI: 10.1016/j.engfracmech.2014.02.004. [2] Kitagawa, H., Yuuki, R., Ohira, T., Crack-morphological aspects in fracture mechanics, Eng. Fract. Mech., 7 (1975) 515–529. DOI: 10.1016/0013-7944(75)90052-1. [3] Suresh, S., Crack deflection: Implications for the growth of long and short fatigue cracks, Metall. Mater. Trans. A, 14 (1983) 2375–2385. DOI: 10.1007/BF02663313. [4] Toribio, J., Kharin, V., Simulations of fatigue crack growth by blunting–re-sharpening: Plasticity induced crack closure vs. alternative controlling variables, Int. J. Fatigue, 50 (2013) 72–82. DOI: 10.1016/j.ijfatigue.2012.02.019. [5] Toribio, J., Kharin, V., Large crack tip deformations and plastic crack advance during fatigue, Mater. Lett., 61 (2007) 964–967. DOI: 10.1016/j.matlet.2006.06.025. [6] Toribio, J., Kharin, V., Ayaso, F.J., González, B., Matos, J.C., Vergara, D., Lorenzo, M., Numerical and experimental analyses of the plasticity-induced fatigue crack growth in high-strength steels, Constr. Build. Mater., 25 (2011) 3935– 3940. DOI: 10.1016/j.conbuildmat.2011.04.025. [7] Tvergaard, V., On fatigue crack growth in ductile materials by crack–tip blunting, J. Mech. Phys. Solids, 52 (2004) 2149–2166. DOI: 10.1016/j.jmps.2004.02.007. [8] McClung, R.C., Thacker, B.H., Roy, S., Finite element visualization of fatigue crack closure in plane stress and plane strain, Int. J. Fract., 50 (1991) 27–49. DOI: 10.1007/BF00035167. [9] Handerhan, K.J., Garrison Jr., W.M., A study of crack tip blunting and the influence of blunting behavior on the fracture toughness of ultra high strength steels, Acta Metall. Mater., 40 (1992) 1337–1355. DOI: 10.1016/0956- 7151(92)90435-H. C T da/d ( /cycle)

RkJQdWJsaXNoZXIy MjM0NDE=