Issue 41

A. Mardaliazad et alii, Frattura ed Integrità Strutturale, 41 (2017) 504-523; DOI: 10.3221/IGF-ESIS.41.62 523 [21] Anghileri, M., Castelletti, M.L., Francesconi, E., Milanese, A., Pittofrati, M., Rigid body water impact–experimental tests and numerical simulations using the SPH method, Int J Impact Eng, 38 (2011) 141-151. [22] Wu, Y., Crawford, J.E., Numerical Modeling of Concrete Using a Partially Associative Plasticity Model, J Eng Mech, 141 (2015) 04015051. [23] Zhao, H., Zhang, C., Cao, W.g., Zhao, M.h., Statistical meso-damage model for quasi-brittle rocks to account for damage tolerance principle, Environ Earth Sci, 75 (2016) 1-12. [24] Olleak, A.A., El-Hofy, H.A., SPH Modelling of Cutting Forces while Turning of Ti6Al4V Alloy, (2015). [25] Bresciani, L., Manes, A., Romano, T., Iavarone, P., Giglio, M., Numerical modelling to reproduce fragmentation of a tungsten heavy alloy projectile impacting a ceramic tile: Adaptive solid mesh to the SPH technique and the cohesive law, Int J Impact Eng, 87 (2016) 3-13. [26] Malvar, L.J., Crawford, J.E., Wesevich, J.W., Simons, D., A new concrete material model for DYNA3D, A New Concrete Material Model for DYNA3D, (1994). [27] Malvar, L.J., Crawford, J., Wesevich, J., Simons, D., A new concrete material model for DYNA3D-Release II: shear dilation and directional rate enhancements, A Report to Defense Nuclear Agency under Contract No DNA001-91-C- 0059, (1996). [28] Malvar, L.J., Crawford, J.E., Wesevich, J.W., Simons, D.A., plasticity concrete material model for DYNA3D, Int J Impact Eng, 19 (1997) 847-873. [29] Malvar, L.J., Crawford, J.E., Morrill, K.B., K&C concrete material model release III-automated generation of material model input. K&C Technical Report TR-99-24-B12000. [30] Manual ASUs. Dassault Systemes Simulia Corp, Providence, RI, (2009). [31] ASTM. Test Method for Flexural Strength of Dimension Stone. C 880-98. West Conshohocken, PA: ASTM International, (1998). [32] Meda, A., Tensile behaviour in natural building stone: Serena sandstone, Materials and Structures, 36 (2003) 553-559. [33] Liu, M., Liu, G., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Archives of computational methods in engineering, 17 (2010) 25-76. [34] Shugar, T., Holland, T., Malvar, L.J., Applications of finite element technology to reinforced concrete explosives containment structures. DTIC Document, (1992). [35] Willam, K., Warnke, E., Constitutive model for the triaxial behavior of concrete, Proceedings, international association for bridge and structural engineering: ISMES, Bergamo, Italy, (1975) 1-30. [36] Mardalizad, A., Manes, A., Giglio, M., An investigation in constitutive models for damage simulation of rock material. AIAS, Associazione Italiana Per L’analisi Delle Sollecitazioni, Università Degli Studi Di Trieste, Italy (2016). [37] Mardalizad, A., Manes, A., Giglio, M., Investigating the tensile fracture behavior of a middle strength rock: experimental tests and numerical models, 14th International Conference on Fracture (ICF14), Rhodes, Greece (2017). [38] ASTM. Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, D 7012-04. West Conshohocken, PA: ASTM International, (2004). [39] Hallquist, J.O., LS-DYNA® Keyword User’s Manual: Volumes I, II, and III LSDYNA R7. 1, Livermore Software Technology Corporation, Livermore (LSTC), Livermore, California, 1265 (2014). [40] Markovich, N., Kochavi, E., Ben-Dor, G., An improved calibration of the concrete damage model, Finite Elements Anal Des, 47 (2011) 1280-1290. [41] Ding, J., Experimental Study on Rock Deformation and Permeability Variation: Texas A&M University, (2013). [42] Lubliner, J., Oliver, J., Oller, S., Onate, E., A plastic-damage model for concrete, International Journal of solids and structures, 25 (1989) 299-326. [43] Sivakugan, N., Das, B., Lovisa, J., Patra, C., Determination of c and φ of rocks from indirect tensile strength and uniaxial compression tests, International Journal of Geotechnical Engineering, 8 (2014) 59-65. [44] Hoek, E., Brown, E.T., Practical estimates of rock mass strength, Int J Rock Mech Min Sci, 34 (1997) 1165-1186.

RkJQdWJsaXNoZXIy MjM0NDE=