Issue 41

S.M.J. Razavi et alii, Frattura ed Integrità Strutturale, 41 (2017) 440-446; DOI: 10.3221/IGF-ESIS.41.55 446 [12] Ayatollahi, M.R., Razavi, S.M.J., Yahya, M.Y., Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique, Eng. Fract. Mech. 145 (2015) 115-127. [13] Ayatollahi, M.R., Razavi, S.M.J., Chamani, H.R., Fatigue Life Extension by Crack Repair Using Stop-hole Technique under Pure Mode-I and Pure mode-II Loading Conditions, Procedia Eng., 74 (2014) 18–21. [14] Ayatollahi, M.R., Razavi, S.M.J., Chamani, H.R., A numerical study on the effect of symmetric crack flank holes on fatigue life extension of a SENT specimen, Fatigue Fract. Eng. Mater. Struct., 37(10) (2014) 1153-1164. [15] Ayatollahi, M.R., Razavi, S.M.J., Rashidi Moghaddam, M., Berto, F., Mode I fracture analysis of Polymethylmetacrylate using modified energy—based models, Phys. Mesomech. 18(5) (2015) 53-62. [16] Ayatollahi, M.R., Rashidi Moghaddam, M., Razavi, S.M.J., Berto, F., Geometry effects on fracture trajectory of PMMA samples under pure mode-I loading, Eng. Fract. Mech., 163 (2016) 449–461. [17] Ayatollahi, M.R., Razavi, S.M.J., Sommitsch, C., Moser, C., Fatigue life extension by crack repair using double stop- hole technique, Mater. Sci. Forum 879 (2017) 3-8. [18] Rashidi Moghaddam, M., Ayatollahi, M.R., Razavi, S.M.J., Berto, F., Mode II Brittle Fracture Assessment Using an Energy Based Criterion, Phys. Mesomech. (in press). [19] Razavi, S.M.J., Ayatollahi, M.R., Sommitsch, C., Moser, C., Retardation of fatigue crack growth in high strength steel S690 using a modified stop-hole technique, Eng. Fract. Mech. 169 (2017) 226–237. [20] Pook, L.P., Sharples, J.K., The mode III fatigue crack growth threshold for mild steel, Int. J. Fract., 15 (1979) R223- R226. [21] Pook, L.P., The fatigue crack direction and threshold behaviour of mild steel under mixed mode I and III loading, Int. J. Fatigue, 7 (1985) 21-30. [22] Tong, J., Yates, J.R., Brown, M.W., Some aspects of fatigue thresholds under mode III and mixed mode and I loadings, Int. J. Fatigue, 18 (1986) 279-285. [23] Christopher, C.J., James, M.N., Patterson, E.A., Tee, K.F., Towards a new model of crack tip stress fields, Int. J. Fract. 148 (2007) 361–371. [24] Lin, B., Mear, M.E., Ravi-Chandar, K., Criterion for initiation of cracks under mixed-mode I + III loading, Int. J. Fract. 165 (2010) 175-188. [25] Atzori, B., Berto, F., Lazzarin, P., Quaresimin, M., Multiaxial fatigue behaviour of a severely notched carbon Steel, Int. J. Fatigue, 28 (2006) 485-493. [26] Berto, F., Lazzarin, P., Yates, J., Multiaxial fatigue of V-notched steel specimens: a non-conventional application of the local energy method, Fatigue Fract. Eng. Mater. Struct. 34 (2011) 921–943. [27] Berto, F., Lazzarin, P., Fatigue strength of structural components under multi-axial loading in terms of local energy density averaged on a control volume, Int. J. Fatigue, 33 (2011) 1055-1065. [28] Gallo, P., Berto, F., Glinka, G Generalized approach to estimation of strains and stresses at blunt V-notches under non-localized creep, Fatigue Fract. Eng. Mater. Struct, 39 (2016) 292-306.

RkJQdWJsaXNoZXIy MjM0NDE=