Issue 41

D.-Q. Wang et alii, Frattura ed Integrità Strutturale, 41 (2017) 143-148; DOI: 10.3221/IGF-ESIS.41.20 148 A CKNOWLEDGEMENTS he authors are grateful for the supports provided by the National Natural Science Foundation of China (Nos. 51575182 and 51325504). R EFERENCES [1] Lee, S.Y., Choo, H., Liaw, P.K., An, K., Hubbard, C.R., A study on fatigue crack growth behavior subjected to a single tensile overload: Part II. Transfer of stress concentration and its role in overload-induced transient crack growth, Acta. Mater., 59 (2011) 495-502. [2] Lee, S.Y., Liaw, P.K., Choo, H., Rogge, R.B., A study on fatigue crack growth behavior subjected to a single tensile overloadPart I. An overload-induced transient crack growth micromechanism, Acta. Mater., 59 (2011) 485-494. [3] Nowell, D., de Matos, P.F.P., Application of digital image correlation to the investigation of crack closure following overloads, Procedia Engineering, 2 (2010) 1035-1043. [4] Yusof, F., Lopez-Crespo, P., Withers, P.J., Effect of overload on crack closure in thick and thin specimens via digital image correlation, Int. J. Fatigue., 56 (2013) 17-24. [5] Xiao, L., Ye, D., Chen, C., Liu, J., Zhang, L., Instrumented indentation measurements of residual stresses around a crack tip under single tensile overloads, Int. J. Mech. Sci., 78 (2014) 44-51. [6] Suresh, S., Further remarks on the micromechanisms of fatigue crack growth retardation following overloads, Eng. Fract. Mech., 21 (1985) 1169-1170. [7] Lopez-Crespo, P., Steuwer, A., Buslaps, T., Tai, Y.H., Lopez-Moreno, A., Yates, J.R., Withers, P.J., Measuring overload effects during fatigue crack growth in bainitic steel by synchrotron X-ray diffraction, Int. J. Fatigue., 71 (2015) 11-16. [8] Sunder, R., Andronik, A., Biakov, A., Eremin, A., Panin, S., Savkin, A., Combined action of crack closure and residual stress under periodic overloads: A fractographic analysis, Int. J. Fatigue., 82 (2016) 667-675. [9] Zhang, W., Liu, Y., Plastic zone size estimation under cyclic loadings using in situ optical microscopy fatigue testing, Fatigue. Fract. Eng. Mater. Struct., 34 (2011) 717-727. [10] Carroll, J., Efstathiou, C., Lambros, J., Sehitoglu, H., Hauber, B., Spottswood, S., Chona, R., Investigation of fatigue crack closure using multiscale image correlation experiments, Eng. Fract. Mech., 76 (2009) 2384-2398. [11] Nowell, D., Kartal, M.E., De Matos, P.F.P., Digital image correlation measurement of near-tip fatigue crack displacement fields: constant amplitude loading and load history effects, Fatigue. Fract. Eng. Mater. Struct., 36 (2013) 3-13. [12] Stinville, J.C., Vanderesse, N., Bridier, F., Bocher, P., Pollock, T.M., High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy, Acta. Mater., 98 (2015) 29-42. [13] Wang, D.-Q., Zhu, M.-L., Xuan, F.-Z., Correlation of local strain with microstructures around fusion zone of a Cr-Ni- Mo-V steel welded joint, Mater. Sci. Eng. A, 685 (2017) 205-212. [14] Zhu, M.-L., Xuan, F.-Z., Tu, S.-T., Observation and modeling of physically short fatigue crack closure in terms of in- situ SEM fatigue test, Mater. Sci. Eng. A, 618 (2014) 86-95. T

RkJQdWJsaXNoZXIy MjM0NDE=