Issue 39

M. Shariati et alii, Frattura ed Integrità Strutturale, 39 (2017) 166-180; DOI: 10.3221/IGF-ESIS.39.17 180 [4] Chen, Y.Z., Stress intensity factors in a finite length cylinder with a circumferential crack. International Journal of Pressure Vessels and Piping, 77 (2000) 439-444. DOI: 10.1016/S0308-0161(00)00047-8. [5] Lee, D-S., A long circular cylinder with a circumferential edge crack subjected to a uniform shearing stress, International Journal of Solids and Structures, 39 (2002) 2613–2628. DOI: 10.1016/S0020-7683(02)00150-6. [6] Jones, I.S., Impulse response model of thermal striping for hollow cylindrical geometries, Theoretical and Applied Fracture Mechanics, 43(1) (2005) 77–88. DOI:10.1016/j.tafmec.2004.12.004. [7] Tran, V-X., Geniaut, S., Development and industrial applications of X-FEM axisymmetric model for fracture mechanics, Eng. Frac. Mech. 82(2012) 135–157. DOI:10.1016/j.engfracmech.2011.12.002. [8] Wu, L., Zhang, L., Guo, Y., Extended finite element method for computation of mixedmode stress intensity factors in three dimensions, Procedia Engineering 31 (2012) 373 – 380. DOI: 10.1016/j.proeng.2012.01.1039. [9] Predan, J., Moÿilnik, V., Gubeljak, N., Stress intensity factors for circumferential semi-elliptical surface cracks in a hollow cylinder subjected to pure torsion, Eng. Frac. Mech., 105 (2013) 152–168. DOI: 10.1016/j.engfracmech.2013.03.033. [10] Sharma, K., Singh, I.V., Mishra, B.K., Bhasin, V., Numerical modeling of part-through cracks in pipe and pipe bend using XFEM, Procedia Materials Science 6 (2014) 72 – 79. DOI: 10.1016/j.mspro.2014.07.009. [11] Seifi, R., Stress intensity factors for internal surface cracks in autofrettaged functionally graded thick cylinders using weight function method, Theoretical and Applied Fracture Mechanics, 75 (2015) 113–123. DOI: 10.1016/j.tafmec.2014.11.004. [12] Eshraghi, I., Soltani, N., Stress intensity factor calculation for internal circumferential cracks in functionally graded cylinders using the weight function approach, Eng. Frac. Mech., 134 (2015) 1–19. DOI: 10.1016/j.engfracmech.2014.12.007. [13] Hatta, H., Taya, M., Equivalent inclusion method for steady state heat conduction in composites, Int. J. Eng. Scie., 24(1986) 520–524. DOI: 10.1016/0020-7225(86)90011-X. [14] Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Materialia, 21 (1973) 571–574. DOI: 10.1016/0001-6160(73)90064-3. [15] Kim, J-H., Paulino G.H., Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials, ASME J. Appl. Mech., 69 (2002) 502–514. DOI: 10.1115/1.1467094. [16] Rao, S.S., The finite element method in engineering, Fifth edition, Butterworth-Heineman, London, (2010). [17] Sadd, M.H., Elasticity: theory, applications and numerics, second edition, Academic Press, San Diego, (2009). [18] Rokhi, M.M., Shariati, M, Coupled thermoelasticity of a functionally graded cracked layer under thermomechanical shocks, Arch Mech, 65(2) (2013) 71–96. [19] Mohammadi, S., Extended finite element method, Blackwell, London, (2008). [20] Rokhi, M.M., Shariati, M., Implementation of the extended finite element method for coupled dynamic thermoelastic fracture of a functionally graded cracked layer. J Braz Soc Mech Sci Eng, 35 (2013) 69–81. DOI: 10.1007/s40430-013-0015-0. [21] Lai, W.M., Rubin, D.H., Rubin, D., Krempl, E., Introduction to continuum mechanics, Butterworth-Heinemann, London, (2009). [22] Logan, D., A first course in the finite element method, Cengage Learning, Boston (2011) [23] Hughes, T.J., The finite element method: linear static and dynamic finite element analysis, Courier Dover Publications, New York, (2000). [24] Moran., B., Shih, C.F., Crack tip and associated domain integrals from momentum and energy balance, Engineering Fracture Mechanics 27(6)(1987) 615-642. DOI: 10.1016/0013-7944(87)90155-X. [25] Gosz, M., Moran, B., An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions, Eng. Frac. Mech., 69(3) (2002) 299-319 DOI: 10.1016/S0013-7944(01)00080-7. [26] Grebner, H., Ustrathmeier, U., Investigation of different isoparametric axisymmetric crack tip elements applied to a complete circumferential surface crack in a pipe. Computers & Structures, 21(6) (1985) 1177-l180. DOI: 10.1016/0045-7949(85)90172-5. [27] Kirugulige, M.S., A study of mixed-mode dynamic fracture in advanced particulate composites by optical interferometry, digital image correlation and finite element methods. Dissertation, Auburn University, (2007).

RkJQdWJsaXNoZXIy MjM0NDE=