Issue 38

L. Cui et alii, Frattura ed Integrità Strutturale, 38 (2016) 26-35; DOI: 10.3221/IGF-ESIS.38.04 35 A CKNOWLEDGEMENT hanks are due to the Forschungsvereinigung der Arbeitsgemeinschaft der Eisen und Metall verarbeitenden Industrie e.V. (AVIF-No. A232) and National Natural Science Foundation of China (No. 51305348) for financial support. R EFERENCES [1] Samir, A., Simon A., Scholz A., Berger C., Service-type creep-fatigue experiments with cruciform specimens and modelling of deformation, International Journal of Fatigue, 28(5-6) (2006) 643-651. [2] Schwienheer, M., Scholz, A., Haase, H., Berger, C., Influences of hold times and notches on life time under service- type creep fatigue loading, Proceedings of Fifth International Conference on Low Cycle Fatigue, LCF 5, Berlin, DVM, (2003) 245-250. [3] Schwienheer, M., Hochtemperaturverhalten der 600°C-Dampftubinenstähle (G)X12CrMoWV-NbN10-1-1, Disserta- tion TU-Darmstadt, D17 (2004). [4] Simon, A., Scholz A., Berger C., Validation of creep fatigue lifetime calculation methods for the application to steam turbine rotors, Variable Amplitude Loading, Darmstadt, Proceedings, DVM, I (2009), 505-516. [5] Tsakmakis, C., Reckwerth, D., The Principle of Generalized Energy Equivalence in Continuum Damage Mechanics, Deformation and Failure in Metallic Materials, Springer Verlag (2003). [6] Wang, P., Cui, L., Scholz, A., Linn, S., Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents, International Journal of Fatigue, 67(2014) 220-227. [7] Taira, S., lifetime of structures subjected to varying load and temperature, in Creep in structure, J. ed. Academic press, New York (1960) S. 96/124. [8] Scholz, A., Berger, C, Deformation and life assessment of high temperature materials under creep fatigue loading, Mat.-wiss. u. Werkstofftechn. 36(11) (2005) 722 – 730. T

RkJQdWJsaXNoZXIy MjM0NDE=