Issue 38

S. Bennati et alii, Frattura ed Integrità Strutturale, 38 (2016) 377-391; DOI: 10.3221/IGF-ESIS.38.47 391 we obtain ql ql C C ql l l 1 2 0 and 1 exp(2 ) 1 exp( 2 )                (A12) where the approximations are justified by the values of the exponential functions in practical problems. Lastly, we obtain the following final expression for the interfacial shear stress: s q l s ql s ( ) ( ) exp( )         (A13) which is equivalent to Eq. (11) in the main text above. By substituting Eqs. (A8) and (A13) into (10) and integrating, we obtain b Q f f b b b Q f f l N s qb ls s qb s C h h l M s q b ls s qb s C 2 , 3 2 , 4 1 ( ) (2 ) exp( ) 2 1 ( ) (1 )(2 ) exp( ) 2 2 2                     (A14) where C 3 and C 4 are integration constants. These are determined by imposing the continuity of the axial force and bending moment at the cross section of the anchor point: b Q b Q N M qa l a , , (0) 0 1 (0) (2 ) 2        (A15) Hence, b f f h l l C qb C qa l a qb 3 4 1 and (2 ) 2 2         (A16) The final expressions for the internal forces in the beam turn out to be b Q f f b Q f b f b l l N s qb ls s qb s l l M s q a s l a s qb h ls s qb h s 2 , 2 , 1 ( ) ( ) exp( ) 2 1 1 1 1 ( ) ( )(2 ) ( ) exp( ) 2 2 2 2                         (A17) It can be easily verified that Eqs. (A8) and (A17) are equivalent to Eqs. (12) in the main text above.

RkJQdWJsaXNoZXIy MjM0NDE=