Issue 38

M.V. Karuskevich et alii, Frattura ed Integrità Strutturale, 38 (2016Y) 205-214; DOI: 10.3221/IGF-ESIS.38.28 214 [22] Yoshida, S., Rourks, R.L., Mita, T., Ichinose, K., Physical mesomechanical criteria of plastic deformation and fracture, Phys. Mesomech., 12 (2009) 249-253. DOI:10.1016/j.physme.2009.12.006. [23] Ignatovich, S.R., Yutskevich, S.S., Monitoring of the d16at alloy according to the characteristics of deformation surface pattern, Mat. Sci., 47 (2011) 636-643. DOI:10.1007/s11003-012-9438-5. [24] Arul Kumar, M., Kanjarla, A.K., Niezgoda, S.R., Lebensohn, R.A., Tomé, C.N., Numerical study of the stress state of a deformation twin in magnesium, Acta Mat., 84 (2015) 349-358. DOI:10.1016/j.actamat.2014.10.048. [25] Zhang, T., Jiang, J., Shollock, B.A., Britton, T.B., Dunne, F.P.E., Slip localization and fatigue crack nucleation near a non-metallic inclusion in polycrystalline nickel-based superalloy, Materials Science and Engineering A, 641 (2015) 328–339. DOI:10.1016/j.msea.2015.06.070. [26] Cikalova, U., Kroening, M., Schreiber, J., Vertyagina, Ye., Evaluation of Al-specimen fatigue using a "smart sensor", Phys.Mesomech., 5-6 (2011) 308-315. DOI:10.1016/j.physme.2011.12.009. [27] Lytvynenko, I., Maruschak, P., Lupenko, S., Panin, S.V., Segmentation and statistical processing of geometric and spatial data on self-organized surface relief of statically deformed aluminum alloy, Appl Mech and Materials, 770 (2015) 288-293. DOI:10.4028/ www.scientific.net/AMM.770.288. [28] Karuskevich, M.V., Karuskevich, O.M., Maslak, T.P., Schepak, S.V., Extrusion/intrusion structures as quantitative indicators of accumulated fatigue damage, International Journal of Fatigue 39 (2012) 116–121. DOI:10.1016/j.ijfatigue.2011.02.007.

RkJQdWJsaXNoZXIy MjM0NDE=