Issue 38

R. Pezer et alii, Frattura ed Integrità Strutturale, 38 (2016) 191-197; DOI: 10.3221/IGF-ESIS.38.26 197 [5] Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D., Structural Stability and Lattice Defects in Copper: Ab initio, Tight-binding, and Embedded-atom Calculations, Phys. Rev. B, 63 (2001) 224106. DOI: 10.1103/PhysRevB.63.224106 [6] Fatemi, A., Socie, D., A, Critical Plane Approach to Multiaxial Fatigue Damage Including out-of-phase Loading, Fatigue Fracture Eng. Mater. Struct., 11 (1988) 149–165. [7] Tschopp, M.A., McDowell, D.L., Influence of Single Crystal Orientation on Homogeneous Dislocation Nucleation Under Uniaxial Loading, J. Mech. Phys. Solids, 56 (2008) 1806-1830. DOI: 10.1016/j.jmps.2007.11.012. [8] Wan, L., Ju, L., Shear responses of [(1)over-bar 1 0]-tilt {115}/{111} Asymmetric Tilt Grain Boundaries in FCC Metals by Atomistic Simulations, Modelling Simul. Mater. Sci. Eng., 21 (2013) 055013. DOI: 10.1088/0965-0393/21/5/055013. [9] Daw, M.S., Baskes, M.I., Embedded-atom Method – Derivaton and application to Impurities, Surfaces, and Other Defects in Metals, Phy. Rev. B, 29(12) (1984) 6443-6453, DOI: 10.1103/PhysRevB.29.6443. [10] Daw, M.S., Foiles, S.M., Baskes, M.I., The Embedded-atom Method – a Review of Theory and Applications, Mater. Sci. Rep., 9 (1993) 251, DOI: 10.1016/0920-2307(93)90001-U. [11] Ogata, S., Ju, L., Yip, S., Ideal Pure Shear Strength of Aluminum and Copper, Science, 298 (2002) 807–811. DOI: 10.1126/science.1076652.

RkJQdWJsaXNoZXIy MjM0NDE=