Issue 37

M. S. Raviraj et alii, Frattura ed Integrità Strutturale, 37 (2016) 360-368; DOI: 10.3221/IGF-ESIS.37.47 368 (b) Void initiation is more significant in the matrix near the interface. The micro-cracks grow from these micro-voids to absorb the energy shows ductile fracture. Also, crack propagates by linking these micro cracks locating the crack path preferentially in the matrix adjacent to the interface. (c) The variation of TiC reinforcement particles with Al6061 alloy matrix will affect the fracture toughness of the material. The fracture toughness of Al6061-TiC (3 wt %-7 wt %) metal matrix composites varied between 16.4 - 19.2 MPa√m as compared to 25MPa√m for base alloy Al6061 [18]. The solution treatment and age hardening process can further increase the toughness of these composites. The work can be extended to higher wt% TiC reinforcement particles with Al6061 alloy matrix. This remains as a future work. A CKNOWLEDGEMENTS he authors thank the Research centre, Bapuji Institute of Engineering & Technology, Davangere-577004, BiSS and TUV Rheinland, Bengaluru for their support in extending the testing facilities and helpful discussions. R EFERENCES [1] McCartney, D.G., Grain refining of aluminium and its alloys using inoculants, Int. Mater. Rev., 34 (1989) 247-260. [2] Mohanty, P.S., Gruzleski, J. E., Mechanism of grain refinement in aluminum, Acta Metall. Mater., 43 (1995) 2001- 2012. [3] Yang, Q., Senda, T., Ohmori, A., Effect of carbide grain size on microstructure and sliding wear behavior of HVOF- sprayed WC-12% Co coatings, Wear, 254 (2003) 23–34. DOI:10.1016/S0043-1648(02)00294-6. [4] Nukami, T., The growth of TiC particles in an Al matrix, Materials Science Letters, 17 (1998) 267-268. [5] [5] Karantzalis, A.E., Lekatou, A., Georgatis, E., Poulas, V., Mavro, H., Microstructural Observations in a Cast Al-Si- Cu/TiC, Composite Materials Engineering and Performance, 10 (2009) 1-10. [6] Surappa, M.K., Rohatgi, P.K., Preparation and properties of aluminium alloy ceramic particle composites, Journal of Material Science, 16 (1981) 983–993. [7] Lloyd, D.J., Particle reinforced aluminum and magnesium matrix composites, International Material Reviews, 39 (1999) 1–23. [8] Fatchurrohman, N., Solidification characteristic of titanium carbide particulate reinforced aluminium alloy matrix composites, Journal of Engineering Science and Technology, 7 (2012) 248-256. [9] Raviraj, M.S., Sharanaprabhu, C.M., Mohankumar, G.C., Experimental Analysis on Processing and Properties of Al- TiC Metal Matrix Composites, Procedia Materials Science, 5 (2014) 2032 – 2038. [10]Yu Qiao, Fracture toughness of composite materials reinforced by debondable particulates, Scripta Materialia, 49 (2003) 491–496. DOI:10.1016/S1359-6462(03)00367-1. [11] Rabiei, A., Vendra, L., Kishi,T., Fracture behavior of particle reinforced metal matrix composites, Composites: Part A, 39 (2008) 294–300. [12]Alaneme, K.K., Aluko, A.O., Fracture toughness (K 1C ) and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites, Scientia Iranica, Transactions A: Civil Engineering 19 (2012) 992–996. [13]Ajit Bhandakkar, Prasad, R.C., Sastry, M.L., Fracture Toughness of AA2024 Aluminum Fly Ash Metal Matrix Composites, International Journal of Composite Materials, 4(2) (2014) 108-124. DOI:10.5923/j.cmaterials.20140402.10. [14]ASTM E399-83, Standard test method for plane strain fracture toughness, Annual book of ASTM Standards, PA (2005). [15]Wilson, C., Landas, J. D., Fracture toughness testing with notched round bars, ASTM-STP1360, Fatigue and Fracture Mechanics, 30 (2000) 69-82. [16]Harrison, J.D., Fatigue Analysis of welded joints, Metal Construction and British Welding Journal, Mar. (1970) 93. [17] Mohanty, J.R., Verma, B.B., Ray, P.K., Evaluation of overload-induced fatigue crack growth retardation parameters using an exponential model, Engineering Fracture Mechanics, 75 (2008) 3941–3951. [18]Davidson, D.L., Tensile deformation and fracture toughness of 2014+15 vol. pct SiC particulated composite. Metall. Trans, 22A (1991) 113-123. T

RkJQdWJsaXNoZXIy MjM0NDE=