Issue 37

Q. Like et alii, Frattura ed Integrità Strutturale, 37 (2016) 342-351; DOI: 10.3221/IGF-ESIS.37.45 351 [11] Omran, M., Fabritius, T., Mattila, R., Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technology, 269 (269) (2015) 7-14. [12] Sheng-hui, G., Guo, C., Jin-hui, P., et al. Microwave assisted grinding of ilmenite ore. Transactions of Nonferrous Metals Society of China, 21 (9) (2011) 2122-2126. [13] Amankwah, R.K., Ofori-Sarpong, G., Microwave heating of gold ores for enhanced grindability and cyanide amenability, Minerals Engineering, 24(6) (2011) 541-544. [14] Cui, H., Chen, J., Feng, X., Li, N., Numerical simulation for temperature rising curve of carbon-bearing chromium powder in microwave field. China Metallurgy, 17 (1) (2007) 30-35. [15] Like, Q., Jun, D., Temperature distribution and influential factors of ore particle under microwave irradiation. Mining and Metallurgical Engineering, 35(3) (2015) 96-98. [16] Jones, D.A., Kingman, S.W., Whittles, D.N., Understanding microwave assisted breakage. Minerals Engineering, 18(7) (2005) 659-669. [17] Ali, A.Y., Bradshaw, S.M., Quantifying damage around grain boundaries in microwave treated ores. Chemical Engineering and Processing, 48(11) (2009) 1566-1573. [18] Like, Q., Jun, D., Meso-mechanics Simulation Analysis of Microwave-assisted Mineral Liberation. Frattura ed Integrita Strutturale, 34 (34) (2015) 543-553. [19] Like, Q., Jun, D., Pengfei, T., Study on the Effect of Microwave Irradiation on Rock Strength. Journal of Engineering Science and Technology Review, 8 (4) (2015) 91-96. [20] Wang, Y., Djordjevic, N., Thermal stress FEM analysis of rock with microwave energy. International Journal of Mineral Processing, 130(28) (2014) 74-81. [21] Like, Q., Jun, D., Juntian, Z., Evolution of temperature and stress in rock under microwave irradiation. Electronic Journal of Geotechnical Engineering, 20(28) (2015) 13507-13516. [22] Wang, G., Radziszewski, P., Ouellet., J., Particle modeling simulation of thermal effects on ore breakage. Computational Materials Science, 43(4) (2008) 892-901. [23] Ali, A.Y., Bradshaw, S.M., Bonded-particle modelling of microwave-induced damage in ore particles. Minerals Engineering, 23 (10) (2010) 780-790. [24] Cundall, P. A., Strack, O. D. L., A discrete numerical model for granular assemblies. Géotechnique, 29(1) (1979) 47- 65. [25] Chen, T.T., Dutrizac, J.E., Hague, K.E., et al. The relative transparency of minerals to microwave radiation. Canadian Metallurgical Quarterly, 23 (3) (1984) 349-354. [26] Potyondy, D.O., Cundall, P.A., A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 41(8) (2004), 1329-1364. [27] Touloukian, Y. S., Judd, W.R., Physical properties of rocks and minerals, McGraw-Hill Book Company, New York, (1980) 56-63. [28] Clark, S. P., Handbook of physical constants. Geological Society of America, New York, (1966) 415-436.

RkJQdWJsaXNoZXIy MjM0NDE=