Issue 37

Y. Wang et alii, Frattura ed Integrità Strutturale, 37 (2016) 241-248; DOI: 10.3221/IGF-ESIS.37.32 248 [15] Wang, C.H., Brown, M.W. Life prediction techniques for variable amplitude multiaxial fatigue – part II: comparison with experimental results, Trans. ASME, J. Eng. Mater. Technol., 118 (1996) 371-374. [16] Fatemi, A., Yang, L., Cumulative fatigue damage and life prediction theories: a survey of the state of art for homogeneous materials, Int. J Fatigue, 20 (1998) 9–34. [17] Wang, Y., Zhang, D., Yao, W., Fatigue damage rule of LY12CZ aluminum alloy under sequential biaxial loading, Sci. China – Phys., Mech. & Astro, 57 (2014) 98-103. [18] Miner, M.A., Cumulative damage in fatigue, J Appl Mech, 67 (1945) AI59–64. [19] Kim, K.S., Park, J.C., Lee, J.W., Multiaxial fatigue under variable amplitude loads, Trans ASME J. Eng. Mater. Technol.,121 (1999) 286-93. [20] Shamsaei, N., Fatemi, A., Socie, D.F., Multiaxial fatigue evaluation using discriminating strain paths. Int. J. Fatigue, 33 (2011) 597-609. [21] Jiang, Y., Sehitoglu, H., Modeling of cyclic racheting plasticity, Part  : development of constitutive equations, Journal of Applied Mechanics, 63 (1996) 720-725. [22] Jiang Y., Sehitoglu H., Modeling of cyclic racheting plasticity, Part II: comparison of model simulations with experiments, Journal of Applied Mechanics, 63 (1996) 726–733.

RkJQdWJsaXNoZXIy MjM0NDE=