Issue 37

I.Llavori et alii, Frattura ed Integrità Strutturale, 37 (2016) 87-93; DOI: 10.3221/IGF-ESIS.37.12 93 [2] Navarro, C., Muñoz, S., Dominguez, J. , On the use of multiaxial fatigue criteria for fretting fatigue life assessment, Int. J. Fatigue, 30 (2008) 32-44. [3] Vázquez, J., Efecto de las tensiones residuales en la fatiga por fretting. PhD. Thesis, Universidad de Sevilla, Spain, (2009). [4] Giner, E., Navarro, C., Sabsabi, M., Tur, M., Dominguez, J., Fuenmayor, F.J., Fretting fatigue life prediction using the extended finite element method, Int. J. Fatigue, 53 (2011) 217-225. [5] Moës, N., Dolbow, J., Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng., 46(1) (1999) 131-150. [6] Madge, J.J., Leen, S.B., Shipway, P.H., A combined wear and crack nucleation-propagation methodology for fretting fatigue prediction, Int. J. Fatigue, 30 (2008) 1509-1528. [7] Giner, E., Sukumar, N., Tarancon, J.E., Fuenmayor, F.J., An Abaqus implementation of the extended finite element method Eng. Fract. Mech., 76 (2009) 347-368. [8] Stolarska, M., Chopp, D.L., Möes, N., Belytschko, T., Modelling crack growth by level sets in the extended finite element method, Int. J. Numer. Meth. Eng., 51 (2001) 943-960. [9] McColl, I.R., Ding, J., Leen, S.B., Finite element simulation and experimental validation of fretting wear, Wear, 256 (2004) 1114-1127. [10] Cruzado, A., Urchegui, M.A., Gómez, X., Finite element modeling and experimental validation of fretting wear scars in thin steel wires, Wear, 289 (2012) 26-38. [11] Magaziner, R., Jin, O., Mal, S., Slip regime explanation of observed size effects in fretting, Wear, 76 (2004) 347-368. [12] Socie, D., Marquis, G., Multiaxial Fatigue, SAE Book, Warrendale, (2000). [13] Cruzado, A., Leen, S.B., Urchegui, M.A., Gómez, X., Finite element simulation of fretting wear and fatigue in thin steel wires, Int. J. Fatigue, 55 (2013) 7-21. [14] CES EduPack 2010. Granta Design.

RkJQdWJsaXNoZXIy MjM0NDE=