Issue 33

J.A Araujo et al, Frattura ed Integrità Strutturale, 33 (2015) 427-433; DOI: 10.3221/IGF-ESIS.33.47 433 [8] Araújo, J. A., Susmel, L., Taylor, D., Ferro, J. C. T., Mamiya, E. N., On the use of the Theory of Critical Distances and the Modified Wöhler Curve Method to estimate fretting fatigue strength of cylindrical contacts, Int. J. Fatigue, 29(1) (2007) 95-107. [9] Proudhon, H., Fouvry, S., Yantio, G. R., Determination and prediction of the fretting crack initiation: introduction of the (P, Q, N) representation and definition of a variable process volume, Int. J. Fatigue, 28(7) (2006)707-713. [10] Araújo, J. A., Castro, F. C., A comparative analysis between multiaxial stress and ΔK-based short crack arrest models in fretting fatigue, Eng. Fract. Mech., 93 (2012) 34-47. [11] Hertz, R., Über die Berührung fester elastischer Körper, J. für die reine und Angew. Math., 92 (1981) 156-171. [12] Cattaneo, C., Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rendiconti dell’Accademia nazionale dei Lincei, Rend. dell’Accademia Naz. dei Lincei, 27 (1938) 342-348. [13] Mindlin, R. D., Compliance of elastic bodies in contact, J. Appl. Mech., 16 (1949) 259-268. [14] Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Groningen, (1953). [15] Hills, D. A., Mechanics of fretting fatigue, Wear, 175(1-2) (1994) 107-113. [16] Neuber, H., Theory of Notch Stresses, Kerbspannungslehre, (1958). [17] Williams, M. L., On the stress distribution at the base of a stationary crack, J. Appl. Mech., 24 (1957) 109-114. [18] Lazzarin, P., Tovo, R., A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches, Int. J. Fract., 78 (1996) 3-19. [19] Filippi, S., Lazzarin, P., Tovo, R., Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates, Int. J. Solids Struct., 39(17) (2002) 4543-4565. [20] Susmel, L., Lazzarin, P., A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment, Fatigue & Fract. Eng. Mater. & Struct., 25(1) (2002) 63-78. [21] Susmel, L., Tovo, R., Lazzarin, P., The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view, Int. J. Fatigue, 27(8) (2005) 928-943. [22] Fatemi, A., Socie, D. F., Critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract. Eng. Mater. Struct., 11(3) (1988) 149-165. [23] Araújo, J. A., Dantas, A. P., Castro, F. C., Mamiya, E. N., Ferreira, J. L. A., On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue, Int. J. Fatigue, 33(8) (2011) 1092-1100. [24] Castro, F. C., Araújo, J. A., Mamiya, E. N., Zouain, N., Remarks on multiaxial fatigue limit criteria based on prismatic hulls and ellipsoids, Int. J. Fatigue, 31(11-12) (2009) 1875-1881. [25] Mamiya, E. N., Araújo, J. A., Castro, F. C., Prismatic hull: A new measure of shear stress amplitude in multiaxial high cycle fatigue, Int. J. Fatigue, 31(7) (2009) 1144-1153. [26] Susmel, L., A unifying approach to estimate the high-cycle fatigue strength of notched components subjected to both uniaxial and multiaxial cyclic loadings, Fatigue Fract. Eng. Mater. Struct., 27(5) (2004) 391-411. [27] Susmel, L., The theory of critical distances: a review of its applications in fatigue, Eng. Fract. Mech., 75(7) (2008) 1706-1724. [28] Taylor, D., A mechanistic approach to critical-distance methods in notch fatigue, Fatigue Fract. Eng. Mater. Struct., 24(4) (2001) 215-224. [29] Martins, L. H., Rossino, L. S., Bose Filho, W. W., Araújo, J. A., Detailed design of fretting fatigue apparatus and tests on 7050-T7451~Al alloy, Tribol. - Mater. Surfaces Interfaces, 2(1) (2008) 39-49.

RkJQdWJsaXNoZXIy MjM0NDE=