Issue 33

J.M. Ayllon et alii, Frattura ed Integrità Strutturale, 33 (2015) 415-426; DOI: 10.3221/IGF-ESIS.33.46 426 [5] Newman, Jr, J.C., Phillips, E.P., Swain, M.H., Fatigue-life prediction methodology using small-crack theory, Int. J. of Fatigue, 21 (1999) 109 – 119. [6] Hou, C.Y., Lawrence, F.V., A crack-closure model for the fatigue behaviour of notched components, Advances in fatigue lifetime predictive techniques, ASTM STP 1292, (1996) 116–135. [7] Ramsamooj, D.V., Analytical prediction of short to long fatigue crack growth rate using small- and large-scale yielding fracture mechanics, Int. J. of Fatigue, 25 (2003) 923 – 933. [8] Navarro, C., Vázquez, J., Domínguez, J., A general model to estimate life in notches and fretting fatigue, Engng. Fract. Mech, 78 (2011) 1590 – 1601. [9] Vazquez, J., Navarro, C., Dominguez, J., On the estimation of fatigue life in notches differentiating the phases of crack initiation and propagation, Fat. and Frac. of Engng. Mat. and Struct., 33 (2010) 22–36. [10] Navarro, C., Muñoz, S., Domínguez, J., On the use of multiaxial fatigue criteria for fretting fatigue life assessment. International Journal of Fatigue, 30 (2008); 32-44. [11] McClung, R.C., Francis, W.L., Hudak Jr., S.J., A new approach to fatigue life prediction based on nucleation and growth, 9th International Fatigue Congress, Atlanta, (2006). [12] Fatemi, A., Socie, D., A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fat. and Frac. of Engng. Mat. and Struct., (1998) 145-65. [13] Vallellano, C., Domínguez, J., Navarro, A., On the estimation of fatigue failure under fretting conditions using notch methodologies, Fatigue Fract Engng Mater Struct., (2003) 469-78. [14] El Haddad, M.H., Topper, T.H., Smith, K.N., Prediction of non propagating cracks, Engng. Fract. Mech., 11 (1979) 573–84. [15] Susmel, L., Multiaxial Notch Fatigue, volume 1. Woodhead Publishing in Materials, (2009). [16] Taylor, D., The theory of critical distances. Elsevier, Amsterdam; London, (2007). [17] Tanaka, K., Engineering formulae for fatigue strength reduction due to crack-like notches, Int. J. of Frac., 22 (1983) 39–46. [18] Taylor, D., Geometrical effects in fatigue: a unifying theoretical approach, Int. J. of Fatigue, 21(1999) 413–420. [19] Lazzarin, P., Tovo, R., Meneghetti, G., Fatigue crack initiation and propagation phases near notches in metals with low notch sensitivity, Int. J. of Fatigue, 19 (1997) 647 – 657. [20] Susmel, L., Taylor D., A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime, Fat. and Frac. of Engng. Mat. and Struct., 30 (2007) 567–581. [21] Kaufman, R.P., Topper, T., The influence of static mean stresses applied normal to the maximum shear planes in multiaxial fatigue, In Manuel de Freitas Andrea Carpinteri and Andrea Spagnoli, editors, Biaxial/Multiaxial Fatigue and Fracture 6th International Conference on Biaxial/Multiaxial Fatigue and Fracture, volume 31 of European Structural Integrity Society,. Elsevier, (2003) 123 – 143. [22] Susmel, L., Lazzarin P., A bi-parametric wöhler curve for high cycle multiaxial fatigue assessment, Fat. and Frac. of Engng. Mat. and Struct, 25 (2002) 63–78. [23] Lazzarin, P., Susmel, L., A stress-based method to predict lifetime under multiaxial fatigue loadings, L., 26 (2003) 1171–1187. [24] UNE-EN ISO 14801. Dentistry. Implants. Dynamic fatigue test for endosseous dental implants (2008). [25] Ayllón, J.M., Navarro, C., Vázquez, J., Domínguez, J., Fatigue life estimation in dental implants. Engng. Fract. Mech., 123 (2014) 34–43. [26] Ayllón, J.M., Análisis del proceso de fatiga en implantes dentales, PhD dissertation, University of Seville (2014).

RkJQdWJsaXNoZXIy MjM0NDE=