Issue 33

A. Bolchoun et alii, Frattura ed Integrità Strutturale, 33 (2015) 238-252; DOI: 10.3221/IGF-ESIS.33.30 252 [11] Bolchoun, A., Sonsino, C.M., Kaufmann, H., Melz, T., Multiaxial random fatigue of magnesium laserbeam-welded joints – Experimental results and numerical fatigue life evaluation, Proc. Engng., 101 (2015) 61-68. [12] Kanazawa, K., Miller, K.J., Brown, M. W., Cyclic deformation of 1% Cr-Mo-V steel under out-of-phase loads, Fatigue Engng. Mater. Struct., 2 (1979) 217-228. [13] Chu, C.C., Conle, F.A., Hübner, A., An integrated uniaxial and multiaxial fatigue life prediction method, VDI-Verlag, Düsseldorf, VDI-Bericht 1283, (1996) 337-348. [14] Capasso, V., Backstein, D., An Introduction to Continuous-Time Stochastic Processes, Birkhäuser, Boston (2005). [15] Susmel, L., A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems, Int. J. Fatigue, 32 (2010) 1875-1883. [16] Radaj, D., Sonsino, C.M., Fricke, W., Fatigue assessment of welded joints by local approaches, 2n ed., Woodhead, Cambridge, (2006). [17] Findley, W.N., A theory of the effect of mean stress on fatigue of metals under combined torsion and axial loading or bending, J. Eng. Ind. (ASME), 81 (1959) 301-306. [18] Zenner, H., Richter, I., Eine Festigkeitshypothese für die Dauerfestigkeit bei beliebigen Beanspruchungskombinationen, Konstruktion, 29 (1) (1977) 11-18. [19] Susmel, L., Sonsino, C.M., Tovo, R., Accuracy of the Modified Wöhler Curve Method applied along with the rref = 1 mm concept in estimating lifetime of welded joints subjected to multiaxial fatigue loading, Int. J. Fatigue, 33 (2011) 1075-1091.

RkJQdWJsaXNoZXIy MjM0NDE=