Issue 33

J. Toribio et alii, Frattura ed Integrità Strutturale, 33 (2015) 221-228; DOI: 10.3221/IGF-ESIS.33.28 228 and Junta de Castilla y León (JCyL; Grants SA067A05, SA111A07 and SA039A08) and the steel supplied by EMESA TREFILERÍA (La Coruña, Spain). R EFERENCES [1] Juhas, M.C., Bernstein, I.M., Effect of prestrain on the mechanical properties of eutectoid steel, Metall. Trans. A, 14 (1983) 1379–1388. [2] Yu, S.R., Yan, Z.G., Cao, R., Chen, J.H., On the change of fracture mechanism with test temperature, Eng. Fract. Mech., 73 (2006) 331–347. [3] Wetscher, F., Stock, R., Pippan, R., Changes in the mechanical properties of a pearlitic steel due to large shear deformation, Mater. Sci. Eng. A, 445–446 (2007) 237–243. [4] Toribio, J., Toledano, M., Fatigue and fracture performance of cold drawn wires for prestressed concrete, Constr. Build. Mater., 14 (2000) 47–53. [5] Astiz, M.A., Valiente, A., Elices, M., Bui, H.D., Anisotropic fracture behaviour of prestressing steels, in: L.O. Faria (ed.), Life Assessment of Dynamically Loaded Materials and Structures - ECF5, EMAS, Portugal, (1985) 385–396. [6] Toribio, J., Valiente, A., Approximate evaluation of directional toughness in heavily drawn pearlitic steels, Mater. Lett., 58 (2004) 3514–3517. [7] Toribio, J., Valiente, A., Failure analysis of cold drawn eutectoid steel wires for prestressed concrete, Eng. Fail. Anal., 13 (2006) 301–311. [8] Toribio, J., Ayaso, F.J., Fracture performance of progressively drawn pearlitic steel under triaxial stress states, Mater. Sci., 37 (2001) 707–717. [9] Alexander, D.J., Bernstein, I.M., The cleavage plane of pearlite, Metall. Trans. A, 13 (1982) 1865–1868. [10] Park, Y.J., Bernstein, I.M., The process of crack initiation and effective grain size for cleavage fracture in pearlitic eutectoid steel, Metall. Trans. A, 10 (1979) 1653–1664. [11] Fernández-Vicente, A., Carsí, M., Peñalba, F., Taleff, E., Ruano, O.A., Toughness dependence on the microstructural parameters for an ultrahigh carbon steel (1.3 wt.% C), Mater. Sci. Eng. A, 335 (2002) 175–185. [12] Toribio, J., Ayaso, F.J., Anisotropic fracture behaviour of cold drawn steel: a materials science approach, Mater. Sci. Eng. A, 343 (2003) 265–272. [13] Toribio, J., A fracture criterion for high-strength steel cracked bars, Struct. Eng. Mech., 14 (2002) 209–222. [14] Singh, U.P., Banerjee, S., On the origin of pop-in crack extension, Acta Metall. Mater., 39 (1991) 1073–1084. [15] Toribio, J., González, B., Matos, J.C., Cleavage stress required to produce fracture path deflection in cold-drawn prestressing steel wires, Int. J. Fract., 144 (2007) 189–196. [16] Toribio, J., Álvarez, N., González, B., Matos, J.C., A critical review of stress intensity factor solutions for surface cracks in round bars subjected to tension loading, Eng. Fail. Anal., 16 (2009) 794–809. [17] Shin, C.S., Cai, C.Q., Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending, Int. J. Fract., 129 (2004) 239–264. [18] Amestoy, M., Bui, H.D., Dang-Van, K., Analytic asymptotic solution of the kinked crack problem, in: D. Francois (ed.), Advances in Fracture Research - ECF5, Pergamon Press, France, (1981) 107–113. [19] Wu, C.H., Fracture under combined loads by maximum-energy-release-rate criterion, J. App. Mech., 45 (1978) 553– 558. [20] Hohenwarter, A., Taylor, A., Stock, R., Pippan, R., Effect of large shear deformations on the fracture behavior of a fully pearlitic steel, Metall. Mater. Trans. A, 42 (2011) 1609–1618.

RkJQdWJsaXNoZXIy MjM0NDE=