Issue 33

A.Spagnoli et alii, Frattura ed Integrità Strutturale, 33 (2015) 80-88; DOI: 10.3221/IGF-ESIS.33.11 88 [5] Taylor, D., Cornetti, P., Pugno, N., The fracture mechanics of finite crack extension. Engng Frac. Mech., 72 (2005) 1021-1038. [6] Li, V.C., Maalej, M., Toughening in cement based composites. Part I: Cement, mortar, and concrete, 18 (1996) 223- 237. [7] Bazant, Z.P., Size effect in blunt fracture: concrete, rock, metal. J. Engng Mech. ASCE, 110 (1984) 518-535. [8] Carpinteri, Al., Scaling laws and renormalization groups for strength and toughness of disordered materials. Int. J. Solids Structures, 31 (1994) 291-302. [9] Carpinteri, An., Spagnoli, A., A fractal analysis of size effect on fatigue crack growth, Int. J. Fatigue, 26(2) (2004) 125- 133. [10] Carpinteri, An., Spagnoli, A., Vantatori, S., A multifractal analysis of fatigue crack growth and its application to concrete, Engng Frac. Mech., 77(6) (2010) 974-984. [11] Gomez, F.J., Elices, M., Berto, F., Lazzarin, P., Local strain energy to assess the static failure of U-notches in plates under mixed mode loading, Int. J. Fract., 145 (2007) 29-45. [12] Xu, S., Reinhardt, H.W., Crack Extension Resistance and Fracture Properties of Quasi-Brittle Softening Materials like Concrete Based on the Complete Process of Fracture, Int. J. Fat., 92 (1998) 71-99. [13] Bazant, Z.P., Analysis of work-of-fracture method for measuring fracture energy of concrete, J. Engng Mech. ASCE, 122 (1996) 138-144. [14] Ferrero, A.M., Migliazza, M., Spagnoli, A., Theoretical modelling of bowing in cracked marble slabs under cyclic thermal loading. Construction and Building Materials, 23 (2009) 2151-2159. [15] Spagnoli, A., Ferrero, A.M., Migliazza, M., A micromechanical model to describe thermal fatigue and bowing of marble. Int. J. Solids Struct., 48 (2011) 2557-2564. [16] Alber, M., Hauptfleisch, U., Generation and visualization of microfractures in Carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness, Int. J. Rock Mechanics & Mining Sci., 36 (1999) 1065-1071. [17] Aliha, M.R.M., Ayatollahi, M.R., Smith, D.J., Pavier, M.J., Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading, Engng Fract. Mech., 77 (2010) 2200-2212 [18] Migliazza, M., Ferrero, A.M., Spagnoli, A., Experimental investigation on crack propagation in Carrara marble subjected to cyclic loads. Int. J. Rock Mechanics & Mining Sci., 48 (2011) 1038-1044. [19] Ferrero, A.M., Migliazza, M., Spagnoli, A., Zucali, M. Micromechanics of intergranular cracking due to anisotropic thermal expansion in calcite marbles, Engineering Fracture Mechanics, 130 (2014) 42-52. [20] Tada, H., Paris, P.C., Irwin, G.R., The Stress Analysis of Crack Handbook. Del Research Corporation, St.Louis (1985). [21] Hillerborg, A., Modéer, M., Petersson, P.E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite lements. Cement Concrete Res, 6 (1976) 773-782. [22] Rice, J.R., Mathematical analysis in the mechanics of fracture. In: Liebowitz H, editor. Fracture – an advanced treatise, New York: Academic Press., 2 (1968) 191-308. [23] Petersson, P.E., Crack growth and development of fracture zones in plain concrete and similar materials. Report TVBM-1006. Division of Building Materials, Lund Institute of Technology, Lund, Sweden, (1981). [24] Planas, J., Elices, M., Guinea, G.V., Measurement of the fracture energy using three-point bend tests: Part 2 – Influence of bulk energy dissipation. Mater. Struct., 25 (1992) 305-312. [25] Wells A.A. Unstable crack propagation in metals-clevage and fast fracture. Symposium on Crack Propagation, Cransfield., 1 (1961) 210-230.

RkJQdWJsaXNoZXIy MjM0NDE=