Issue 29

A Fortini et alii, Frattura ed Integrità Strutturale, 29 (2014) 74-84; DOI: 10.3221/IGF-ESIS.29.08 84 [13] Luo, H.Y., Abel, E.W., A comparison of methods for the training of NiTi two-way shape memory alloy, Smart Mater. Struct., 16 (2007) 2543-2549. [14] Perkins, J., Hodgson, D., The two way shape memory effect, in: Duerig, T.W. et al (Eds.), Engineering aspect of shape memory alloys, Butterworth-Heinmann, (1990) 195-206. [15] Kohl, M., Dittmann, D., Quandt, E., Winzek, B., Miyazaki, S., Allen, D. Shape memory microvalves based on thin films or rolled sheets. Mater. Sci. Eng. A 273-275, (1999) 784-788. [16] Winzek, B., Sterzl, T., Quandt, E. Bistable thin film composites with TiHfNi shape memory alloys. In: Proceedings of the International Conference Transducers ’01/Eurosensors XV, vol. 1, pp. 706–709. München, Germany (2001). [17] Roh, J., Bae, J. Thermomechanical behavior of Ni-Ti shape memory alloy ribbons and their numerical modeling. Mech. Mater. 42, (2010) 757-773. [18] Irzhak, A., Kalashnikov, V., Koledov, V., Kuchin, D., Lebedev, G., Lega, P., Pikhtin, N., Tarasov, I., Shavrov, V., Shelyakov, A. Giant reversible deformations in a shape-memory composite material. Tech. Phys. Lett. 36, (2010) 329- 332. [19] Meng, X., Cai, W., Zheng, Y., Rao, Y., Zhao, L. Two-way shape memory effect induced by martensite deformation and stabilization of martensite in Ti36Ni49Hf15 high temperature shape memory alloy. Mater. Lett. 57, (2003) 4206– 4211. [20] Rizzoni, R., Merlin, M., Casari D., Shape recovery behaviour of shape memory thin strips in cylindrical bending: experiments and modelling, Continuum Mech. Therm., 25 (2013) 207-227. [21] Kirindi, T., Sari, U., Dikici, M. The effects of pre-strain, recovery temperature, and bending deformation on shape memory effect in an Fe–Mn–Si–Cr–Ni alloy. J. Alloy. Compd. 475, (2009) 145-150. [22] Balak, Z., Abbasi, S. M., Effect of primary microstructures during training producers on TWSME in NiTi alloys. Int. J. Eng., 25, (2012), 337-341. [23] Saint-Sulpice, L., Arbab Chirani S., Calloch S., A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings. Mech. Mat., 41 (2009) 12-26. [24] Mehrabi, K., Bruncko, M., Kneissl, A. C., Microstructure, mechanical and functional properties of NiTi-based shape memory ribbons. J. Alloys Compd., 526 (2012) 45-52. [25] Auricchio, F., Marfia, S., Sacco, E., Modelling of SMA materials: training and two-way memory effects, Comput. Struct., 81(2003) 2301-2317. [26] Khandelwal, A., Buravalla, V., Models for shape memory alloy behavior: an overview of modeling approaches, Int. J. Struct. Changes Solids Mech. Appl., 1 (2009) 1-30. [27] Paiva, A., Savi, M.A., An overview of constitutive models for shape memory alloys, Math. Prob. Eng., (2006) 1-30. [28] Marfia, S., Rizzoni, R., One-dimensional constitutive SMA model with two martensite variants: Analytical and numerical solutions, Eur. J. Mech. A. Solids, 40 (2013), 166-185. [29] Kang G., Kan Q., Qian L., Liu Y., Ratchetting deformation of super-elastic and shape-memory NiTi alloys, Mech. Mat., 41 (2009) 139-153.

RkJQdWJsaXNoZXIy MjM0NDE=