Issue 29

A. Bacigalupo et alii, Frattura ed Integrità Strutturale, 29 (2014) 1-8; DOI: 10.3221/IGF-ESIS.29.01 8 support of the Italian Ministry of Education, University and Research in the framework of the FIRB project 2010, “Structural mechanics models for renewable energy applications" . R EFERENCES [1] Lu, M.H., Feng, L., Chen, Y.-F., Phononic crystals and acoustic metamaterials, MaterialsToday, 12 (2009) 34-42. [2] Pennec, Y., Vasseur, J.O., Djafari-Rouhani, B., Dobrzyński, L., Deymier, P.A., Two-dimensional phononic crystals: Examples and applications, Surface Science Reports, 65 (2010) 229–291. [3] Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chang, C.T., Sheng, P., Locally Resonant Sonic Materials, Science, 289 (2000) 1734-1736. [4] Huang, H.H., Sun, C.T., Huang, G.L., On the negative effective mass density in acoustic metamaterials, Int. J. of Engineering Science, 47 (2009) 610-617. [5] Huang, H.H., Sun, C.T., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density, New Journal of Physiscs, 11 (2009) 013003. [6] Bigoni, D., Guenneau, S., Movchan, A. B., Brun M., Elastic metamaterials with inertial locally resonant structures: Application to lensing and localization, Physical Review, B 87 (2013) 174303. [7] Tee, K.F., Spadoni, A., Scarpa, F., Ruzzene, M., Wave propagation in auxetic tetrachiral honeycombs, J. of Vibration and Acoustics ASME, 132 (2010) 031007-1/8. [8] Spadoni, A., Ruzzene, M., Gonella, S., Scarpa, F., Phononic properties of hexagonal chiral lattices, Wave Motion, 46 (2009) 435-450. [9] Prawoto, Y., Seeeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio, Computational Material Science, 58 (2012) 140-153. [10] Lakes, R. S.,Foam structures with a negative Poisson’s ratio, Science, 235 (1987) 1038-1040. [11] Prall, D., Lakes, R.S., Properties of chiral honeycomb with a Poisson ratio of -1, Int. J. Mechanical Sciences, 39 (1997) 305-314. [12] Spadoni, A., Ruzzene, M., Elasto-static micropolar behavior of a chiral auxetic lattice, J. Mechanics and Physics of Solids, 60 (2012) 156-171. [13] Liu, X.N., Huang, G.L., Hu, G.K., Chiral effect in plane isotropic micropolar elasticity and it’s application to chiral lattices, J. Mechanics and Physics of Solids, 60 (2012) 1907-1921. [14] Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L., Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, J. of Sound and Vibration, 330 (2011) 2536-2553. [15] Bacigalupo, A., Gambarotta, L., Homogenization of periodic hexa- and tetrachiral cellular solids, Composite Structures, DOI 10.1016/j.compstruct.2014.05.033, 2014.to appear. [16] Stefanou, I., Sulem, J., Vardoulakis, I., Three-dimensional Cosserat homogenization of masonry structures: elasticity, Acta Geotechnica, 3 (2008) 71–83. [17] Parfitt, V.R., Eringen, A.C., Reflection of Plane Waves from the Flat Boundary of a Micropolar Elastic Half-Space, J. Acoustical Society of America, 45 (1969) 1258-1272. [18] Khurana, A., Tomar, S.K., Longitudinal wave response of a chiral slab interposed between micropolar solid half- spaces, Int. J. of Solids and Structures, 46 (2009) 135–150.

RkJQdWJsaXNoZXIy MjM0NDE=