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ON TWO APPROACHES TO COMPRESSIVE FRACTURE PROBLEMS

Igor A. Guz”

Substantiation of the continuum theory of fracture under compression
for the layered composites with periodic structure is considered. Bas-
ing on the previous results obtained by the author within the scope of
three-dimensional linearised theory of deformable bodies stability
asymptotic accuracy of the continuum theory of plastic fracture is be-
ing proved. The particular mode of stability loss. which corresponds to
the continuum approximation is determined within the model of
piecewise-homogeneous medium. The investigation is carried out
within the scope of small precritical deformations theory for three-
dimensional (non-axisymmetrical and axisymmetrical) as well as for
plane problems and plane problems and is illustrated by numerical
results for the particular types of metal matrix composites.

INTRODUCTION

There are two different approaches to description of phenomena in mechanics of compos-
ites. One of them is based on the model of piecewise-homogeneous medium, when be-
haviour of each component of material is described by three-dimensional equations of
solid mechanics provided certain boundary conditions are satisfied at the interfaces. This
approach enables to investigate in the most rigorous way phenomena in the composite
imicrostructure. However, due to the complexity its application is restricted to a very small
group of problems. The other approach, or continuum theory, involves significant simpli-
fications. Within the continuum theory a composite is simulated by homogeneous aniso-
tropic material with effective constants, by means of which physical propetties of the
original material, shape and concentration of components are taken into account. Contin-
uum theory may be applied when the scale of investigated phenomenon (for example, the
wavelength of the mode of stability loss /) is considerably smaller than that of material
structure (say, the layer thickness #), i.e. | >> h . The approach based on the model of the
piecewise homogeneous medium is free from such restrictions and is, therefore, an exact
one. The wide usage of the continuum theory, based on its simplicity in comparison with
the model of piecewise-homogeneous medium, puts into consideration the questions of its
accuracy and of its domain of applicability. The answer to it may be given only by com-
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parison of the results delivered by both continuum theory and the exact approach, based
on thz model of the piecewise-homogeneous medium. The last imposes no restrictions on
the scale of investigated phenomena and, therefore, has a much larger domain of applica-
bility than the first one. The results obtained within continuum theory must follow from
those obtained using the model of piecewise-homogeneous medium if the ratio between
the scale of structure and the scale of phenomena tends to zero, i.e. when h/ 0. If this
is the case, the continuum theory may be considered as asymptotically accurate one.

The present investigation is devoted to substantiation of the continuum theory of
fracture (A.N. Guz (4)) in compression for laminated composite materials with periodical
structure. Within the scope of this theory the moment of stability loss in the structure of
material - internal instability according to Biot (1) - is being treated as the beginning of
fracture process. By the present time investigations of the continuum theory accuracy,
from the model of piecewise-homogeneous medium point of view, have been done only
for the problems of statics and wave propagation by Brekhovskih (2) and Rytov (9). But.
there are no such investigations for problems on stability loss in composite structure yet.
Basing on the results obtained by A.N. Guz and 1.A. Guz (5), LA. Guz (6-8) using the
model of piecewise-homogeneous medium and three-dimensional linearised theory of
deformable bodies stability (TLTDBS) developed by A.N. Guz (3). asymptotic accuracy
of the continuum theory of plastic fracture is examined in this paper for composites with
metal matrix. The investigation is carried out for small precritical strains for three-
dimensional (non-axisymmetrical and axisymmetrical) as well as for plane problems.
Consideration of small strains only is justified, since fracture of composite materials with
metal matrix usually happens under small deformations.

ASYMPTOTIC ANALYSIS OF CHARACTERISTIC DETERMINANTS

Let us consider very briefly the asymptotic analysis of solutions of the stability problems
for layered composites in compression. Let composite consist of alternating layers with
thicknesses 24, and 2h, , which are simulated respectively by compressible elastic trans-
versally isotropic and elastoplastic incompressible solids. Thickness of the latter (matrix)
is assumed to be larger one. (Henceforth all values referred to these layers will be labelled
by indices a and m). Suppose also that the material is compressed in plane of the layers by
“dead” loads applied at infinity in such a manner that equal deformations along each layer
are provided. The detailed problem statement and solution within the scope of exact ap-
proach (i.e. using model of piecewise-homogeneous medium and equations of TLTDBS)
for the above materials are given in references (7, 8) and for materials with other proper-
ties of layers in references (5, 6). It is worth noting that in the case of elastoplastic layers
the generalised concept of continuing loading, which allows to neglect variations of load-
ing and unloading zones during the stability loss, is utilised.

To perform the asymptotic analysis we should apply the condition of applicability of
the continuum theory A/ — 0 to all formulae of references (7, 8) and calculate the limits

analytically under this condition, which yields

=0, a,—>0 where ¢,= xhl™, an=mh,i"
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On substitution of (1) into characteristic determinants derived in references (7, 8) for four
considered modes of stability loss we get
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Characteristic equations (2)-(5) correspond respectively to the 1*, 2™, 3% and 4™ modes of
stability loss for the case of biaxial compression (non-axisymmetrical problem). Hence-
forth only this problem is analysed. Consideration of other problem statements (plane
problem in the case of uniaxial compression, axisymmetrical problem in the case of biax-
ial compression) has proved to lead to the same conclusions.

Let us examine characteristic equations (2)-(5). It was proved in reference (4) that
for approved models of layers

R -0, /=123 I& =0, 3et =380 =0, & =8 ©)

Besides that, the roots of characteristic equations, which correspond to the consid-
ered phenomenon of internal instability, must depend on properties of both alternating
layers, i.e. on the ratio A, /h,, . This feature was discussed, for example, in references (6-
8). Given the above-said and condition (4), one can observe that characteristic equations
(3) and (5), which correspond respectively to the 2™ and 4™ modes of stability loss, do not
have such roots and, therefore, do not describe the internal instability in the long-wave
approximation. Components of tensor @ and k¥ may be expressed using formulae of in
references (3, 4). On substituting them into characteristic equation (2), which corresponds
to the 1% mode of stability loss, we derive for the roots which depend on A, /h,
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Introducing effective values of stresses (o1) and parameters {12}, (4,,) in the moment
of stability loss by well-known formulae

(o0) =0 Sut o Sms (B ) = His s (35 S+ B S )™ {An)= A4S, ANS,  (8)
we can obtain from equation (7) that
( 11i )r ==(oh) = (m) ©9)

This coincides with the results derived in reference (4) within the scope of continuum
theory of plastic fracture for laminated composites.

As to characteristic equation (4), which corresponds to the 3" mode of stability loss,
we observe that in long-wave approximation this mode yields higher critical stresses than
the 1* mode and, therefore, along with the 2" and 4" modes may be excluded from con-
sideration. Indeed, on substitution of (8) into (4) we get

~(at ) (Au) SuSml A= AB)( ABSa+ ALSH )" (10)

From the condition of uniqueness of solution of a linear problem for orthotropic bodies it
follows (references (3, 4)) that Ay, >0, Ay > 0. Besides that, real constructive compos-

ite materials show higher compressive than shear strength, i.e. (4,,)> (1y3) - And, finally,

on substitution of the above inequalities into (10) we obtain
—{o% ) () + SuSul Al - ABS(ABSa + ARSH)" 7 (An) - (my) (D

Inequalities (11) clearly show that critical stresses (9) corresponding to the 1" mode of
stability loss, are always smaller than those corresponding to the 3" mode (10).

NUMERICAL RESULTS FOR METAL MATRIX COMPOSITES

Now, using the results of the previous section, the accuracy of the continuum theory (i.e.
ratio of results obtained in the context of exact approach and continuum theory) can be
calculated. Values of critical strains (or other critical parameters, €.g. critical stresses)
calculated within the scope of exact approach may be found in numerous publications, e.g.
in reference (8). Following these papers values of critical strains for the 1> mode of stabil-
ity loss under the condition of applicability of the continuum theory are easily obtained.
Some papers even show them explicitly. Comparing the above-mentioned values of criti-
cal parameters the asymptotic accuracy of the continuum theory of fracture for metal ma-
trix composites in compression can be estimated and conclusions about reasonability of
utilisation of this theory can be made properly.
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As an example, let us consider a composite consisting of alternating layers of linear-
elastic isotropic compressible filler characterised by Young’s modulus £ and Poisson’s
ratio v, and elastoplastic incompressible matrix with power-mode dependence between

the equivalent stress and the equivalent strain in the form o = A(e;)" . Dependences of

parameter © on A/E calculated following reference (8) are given on Fig. | and Fig. 2.

SYMBOLS USED

h = half-thickness of the layer (m)

§ = volume fraction of a particular type of layers

a = wave-generation parameter for modes of stability loss

® = ratio of results obtained in the context of exact approach and continuum theory (%)
& = tensor in linearised constitutive equations of TLTDBS for incompressible solids

( I1; ), = theoretical strength limit (GPa)
<(;',‘1> = effective values of stresses (GPa)

@ = tensor in linearised constitutive equations of TLTDBS for compressible solids
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Figure 1 The case of biaxial compression: v =021; k= 0.1 (curves 1), 0.43 (curves 2),
0.7 (curves 3); h, /h,, =0.02 (continuous curves), 0.05 (hatched curves)
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Figure 2 The case of uniaxial compression: v =0.21; k=0.1 (curves 1), 0.43 (curves 2),
0.7 (curves 3); h, [h, = 0.03 (continuous curves), 0.06 (hatched curves)
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