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MODELLING FRACTURE IN ALUMINIUM BASED METAL MATRIX

COMPOSITES USING A STATISTICAL APPROACH

K. M. Mussert, M. Janssen, A. Bakker and S. van der Zwaag’

Fracture in an Al6061 based metal matrix composite (MMC)
containing 20 vol.% ALO, particles is modelled using an
axisymmetrical finite element model and a statistical approach for
calculating strengths of ceramic via Weibull’s model. In this model, the
MMC is assumed to fail as soon as the particle has failed. By plotting
the calculated survival probability of an AlLO, particle versus the
macroscopic axial stress applied on the whole MMC, the applicability
of Weibull statistics on these type of new materials can be checked.

It can be concluded that for higher triaxialities, the ALOj particle fails
before plasticity in the matrix occurs. Furthermore, knowing the stress
distribution in a ceramic particle, Weibull’s model can be used to
calculate the survival probability of ceramic particles in ductile
matrices, however, the Weibull modulus becomes meaningless when a
non-proportional stress distribution in the matrix occurs.

INTRODUCTION

Due to advantages offered by ceramic particle reinforced metal matrix composites
(MMCs), such as high strength, high stiffness and high resistance to wear as compared to
the matrix materials, this type of materials have attracted increasingly more attention in
the past decade. A reason for using any composite material is the extent to which the
qualities of two or more constituents can be combined, without seriously accentuating
their shortcomings. Aluminium and its alloys form the most widely investigated matrices,
whereby the excellent ductility and formability of the matrix is combined with the
stiffness and load-bearing capacity of the reinforcement.

To study the influence of ceramic particles in a ductile aluminium matrix, an
axisymmetrical finite element model is used. Within this model, variables such as particle
volume fraction, particle size and matrix alloy properties can be varied. It is assumed that
the MMC fails as soon as the particle fails. The MMC investigated in this research has a
matrix of Al6061 reinforced with 20 vol.% AlO; particles. Weibull’s statistical model for
treatment of strengths of ceramic is used to determine the survival probability of an AL,O,
particle in an Al6061 matrix under uniaxial and triaxial stress states. Since the Weibull
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model is applied on a single particle, it has to be checked whether this model is
representative for fracture of the whole MMC.

CELL MODEL

Micromechanical models of ductile damage and fracture can be described by the
structural behaviour of relatively simple unit-cells (1). Cell model calculations are
normally used to study porous solids, but in this research the model is used for metal
matrix composites.

The continuum is considered to consist of a periodic assemblage of hexagonal
cylindrical unit cells approximated by circular cylinders, see figure 1, which allows for a
simple axisymmetrical calculation. Every cell of initial length 2L, and radius R, contains
a spherical particle of radius r,. A disadvantage of this approach is that the relative
position of the particles in the matrix is fixed. The surfaces normal to the axial and radial
directions are subjected to homogeneous displacements in these directions respectively. If
triaxiality shall be kept constant during the loading history, the ratio

p=Zn Q)

has to remain constant, whereas the ratio of the prescribed strains, €,/€,, will consequently
vary with increasing load (2).

WEIBULL MODEL

In ceramics, strength is essentially limited by the flaws which are present. Wherever a
strength value is given for a ceramic it is likely to be an average, as with metals, but the
amount of scatter is more pronounced. An appropriate statistical treatment for strengths
of ceramics is the Weibull model (3).

This model is based on the idea that a chain consisting of nominally identical links is
as strong as its weakest link. The links have individual strengths which vary statistically.
The probability of survival of any one link for a stress ¢ is S,. The individual link
survival probability S, is a function of stress only and it is convenient to express it in
terms of a ‘risk of rupture’ R, defined by:

8, =exp(-R)) @

with R, being dependent on stress alone. Transferring the model to arbitrary volumes of
ceramic, the following expression for the risk of rupture is obtained:

R:JRldV : €))

Weibull’s important contribution was a postulate, based largely on empiricism, that:
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where m is the so-called Weibull modulus, 6 is the applied stress and o, is a threshold
stress at which (or below) survival is certain. It is usual for ceramics to take 6, = 0 MPa
(3); o, can then be interpreted as the stress at which S = 1/e.
When modelling ceramics, a distinction can be made between fracture initiating from
surface defects or volume defects. At this stage in the current research only volume flaws
are taken into account.

It should be noted that for a uniform stress distribution, eq. 4 in combination with S =
exp(-R) results in:

S= exp{f[—;—] } (5)
0

Manipulation of eq. 5 allows a straight line representation of gradient m, when Inln(1/S)
is plotted against In(c):

1nlné = mln(c) - mino, (6)

FINITE ELEMENT CALCULATIONS

To calculate the survival probability of a ceramic particle in an MMC, the finite
element method is used. For every integration point of each element belonging to the
particle, the principle stresses G, G, and o, are calculated and these values are averaged
to get the principle stresses for the element. Furthermore, the volume of each element is
calculated. Using the average principle stresses, the applied stress is calculated using the
Driicker-Prager criterion (from this point forward this stress will be denoted as opp):

Cpp :\[;[(c] -0,) +(o, ~a;) +(o; —01)2] +1a(o, +0, +o3) )

Knowing the ratio between the compression strength and the tensile strength of the
material, o can be calculated. Now, for a given o, and m, R, can be calculated for each
element. These R,-values are added up to get the total R of the whole particle (eq. 3) with
which the survival probability S is calculated.

The finite element mesh used for calculations consisted of 350 isoparametric
quadrilateral 4-node elements, with a mesh as shown in figure 2. The metal matrix
composite is modelled with a matrix of Al6061 (E = 69 GPa, v =0.33, o, = 276 MPa)
and 20 vol.% AlO; particles with a diameter of 4 um (E =393 GPa, v = 0.27, 0y, = 2000
GPa, this is a fictitious high value to prevent plastic deformation in the particle).
Calculations were done with p-values 0 (uniaxial tensile test), 0.1, 0.3, 0.5 and 0.7
(triaxial tensile tests). The survival probability S was then calculated with m = 15 and o,
=350 MPa.
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To check the correctness of the calculations, Inln(1/S) is plotted versus the
macroscopic axial stress G, in figure 3. Since oy, varies from element to element this
value can not be plotted in this graph. It can be seen that the calculations result in a
straight line of gradient m = 15, only for p-values 0, 0.1 and 0.3 the last part (In(c,,) > 5.6
~ 270 MPa) shows some curvature.

DISCUSSION AND CONCLUSION

In this research, the Weibull model is used in combination with finite element
calculations to determine fracture of a ceramic particle in an aluminium matrix.

To explain the results obtained in figure 3, one should bear in mind that egs. 5 and 6
only hold in case of a uniform stress distribution in the particle. In figure 4, the actual
Driicker-Prager stress opp is calculated for 15 nodes near the surface of the particle for p
=0 and 0.7 and plotted versus the macroscopic axial stress G,,. It can be seen that there is
a linear relation between op,p and o, up to 330 MPa in case of p = 0 and up to 1100 MPa
in case of p = 0.7. Also, it is clear that opp is dependent on the position in the particle, i.e.
a non-uniform stress distribution exists. In egs. 5 and 6, & should be replaced by opp(X) =
o,, - f(x), where f(x) is some function of the position in the particle. Eq. 6 now becomes:

lnlné = ln{J- f(l)de) +min(c ,,)— minc, (8)

v

It can now be seen that, as a result of non-uniformity, there is an additional factor, which
explains the translations along the survival probability axis for increasing p-values.

If not only a non-uniform, but also a non-proportional distribution of stresses exists
due to plasticity in the matrix, f(x) becomes f(x,0,,). Now, the integral in eq. 8 is also
dependent on o, and the straight line in figure 3 will disappear. For p = 0.7 the linear
relation between opp and G, is maintained till higher stresses, but it can be seen from
figure 5 (which is just another representation of figure 3) that a survival probability of
zero is already reached at a macroscopic axial stress of 500 MPa. This explains why in
figure 3 the curve remains a straight line for the higher p-values.

So, for higher triaxialities, the Al,O, particle fails before plasticity occurs in the
matrix and knowing the stress distribution in a ceramic particle, Weibull’s model can be
used to calculate the survival probability of ceramic particles in ductile matrices.
However, the Weibull modulus becomes meaningless when a non-proportional stress
distribution in the matrix occurs. More calculations have to be done to investigate other m
and o, values, particle sizes and to incorporate surface defects and interface strengths.
Furthermore, when more experimental data become available, the model has to be
adjusted in terms of particle volume fraction, particle size and matrix alloy properties.
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Figure 1: Micromechanical modelling of a  Figure 2: Finite element mesh used for
matrix containing a spherical particle calculations
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Figure 3: Survival probability S as a function of macroscopic axial stress o, for p =0,
0.1, 0.3, 0.5 and 0.7, for a particle with a diameter of 4 um, 6, = 350 MPa and m = 15
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Figure 4: Driicker-Prager stress Opp as a function of macroscopic axial stress o, for
various nodes in a particle with a diameter of 4 pm
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Figure 5: Survival probability S as a function of macroscopic axial stress o, for different
stress ratios p and a particle with a diameter of 4 pm
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