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NUMERICAL METHOD FOR DETERMINATION OF THE MIXED
MODE CRACK BEHAVIOUR IN ELASTIC-PLASTIC MATERIALS

J. Li, X. B. Zhang, N. Recho*

In this paper, a numerical method was proposed to estimate the plastic
mixity parameter M7 for an elastic-plastic plane strain crack under
mixed mode loading. An associated J-integral, the J*-integral, has been
defined. This integral is path-independent and can be evaluated from two
sets of elastic-plastic fields, onc being the actual field and another the
auxiliary field. The last one can be obtained by decomposition of the
actual field into symmetrical and anti-symmetrical parts with respect to
the crack axis. By examining the J*-integral in the near-tip fully plastic
zone, the relationship between the J*-integral and the plastic mixity
parameter has been established. This method allows a simple evaluation
of the plastic mixity parameter without considering the near tip stress
field. The numerical studies show that the present method is quite
accurate in the determination of the mode mixity parameter comparing
with the finite-element results.

INTRODUCTION

In plane elastic-plastic mechanics, few methods have been developed to separate the mixed
modes. Shih [1] generalized the solution of Hutchinson [2] and Rice and Rosengren [3] (the
HRR solution), initially derived for mode I plastic cracks, for corresponding mixed mode
problems. He showed that two parameters, the J-integral [4] and the plastic mixity
parameter M7, define completely the near-tip asymptotic stress field. The mixity parameter
M? was related to the stress intensity factors Kj and K of the far elastic field by using the
finite-clement analysis for small-scale yielding. Kishimoto et al. [5] developed a path-
independent integral, the J -integral, which can be decomposed into J! and J7,
corresponding respectively the symmetrical and the anti-symmetrical parts of the J integral
with respect to the crack axis. For linear elastic materials, the J -integral coincides with the

J-integral and J!and J”are related respectively to the stress intensity factors Kj and K.
Tohgo and Ishii [6] proposed a simple method to estimate the symmetrical and anti-
symmetrical parts of J-integral for single-edge-cracked specimens subjected to bending
moment and shearing force. However, the decompositions in [5] and [6] did not lead to
determine the plastic mode mixity parameter. Since at present there is no systematic method
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for determining the near-tip plastic mode-mixity, experimental results (for example Tohgo
et to al. [7], Aoki et al. [8]) are being reported using the ratio of the elastic stress intensity
factors (Ky/Kp). This may be meaningless because large plastic yielding can take place prior
fracture initiation in low strength alloys. Therefore, it is very important to find out an
general method to determinate the mixity parameter M”, an essential parameter allowing the
determination of the near-tip asymptotic field.

In this paper, an associated J-integral, the J*-integral, was defined in order to decouple
the mixed modes of an elastic-plastic crack. The auxiliary fields, constructed from the
symmetrical and anti-symmetrical parts of the actual field, were introduced into the J*-
integral. By completing two independent calculations with the two auxiliary fields, two
values of the J*-integral can be obtained for mixed mode cracks. By introducing a
simplification in the calculation, the evaluation of these two values in the near-tip region
leads to the determination of AM”. The results obtained in this work agree well with those of
Shih [1] for cracks under small-scale yielding conditions. Because of the path-
independence of the J*-integral, no analysis of the stress field near the crack tip is required
to separate the mixed modes. Moreover, the present method is not limited by the small-
scale yielding conditions and can be applied to any platic yielding case.

GENERAL CONSIDERATION

Let us consider two sets of plane-strain elastic-plastic fields (#,€,0) and (# *,e*,6*), where
u,e,0 are respectively the displacement vector, the strain tensor and the stress tensor of the
actual field, and u*,g*c* are the corresponding quantities of an auxiliary field. The
associated J-integral, the J*-integral, can be defined in Cartesian coordinates as follows:

*
* ou;
J*ZJLW nl——cijnj—g'st (1)
where I is an arbitrary path around the crack tip, w* is the associated strain energy density
defined as follows:
* *

From this definition, it is easy to show that the J*-integral is path-independent. Following
the approach of Ishikawa et al. [9], one can decompose the actual field into symmetncal and

anti-symmetrical parts with respect to the crack axis. So we introduce the fields u” and u”
as follows:

M x,9) = 3 + ()M xim3)] 61,2 MLT) )
According to (1) and (3), two associated J-integral can be defined as follows:
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Now we consider the case when the radius of the integral tends to zero such that it
lies within the zone dominated by the fully plastic singularity. Shih [1] showed that, for a
mixed mode crack lying in a power-law hardening material, the stresses, strains and
displacements near the crack tip are dominated by the HRR singularity, and can be
represented in polar coordinates (r.6) as follows:

oy = ookr VD56, MP)

o

_ Q00 pn —n/(n+l)z P (6)
i=Tp Ky g0, MP)

1

w = a;o K"rll("+])1'7i(9,Mp)

where o, is the yield stress, o may be regarded as a material constant, n is the strain
hardening coefficient, E is Young’s modulus, K is the plastic stress-intensity factor and M”
is the mixity parameter near the crack tip defined as follows:

~ _ P
MP = 2 tan! Sgp(®@=0,M")
T 5,0(0=0,MP)

The dimensionless functions G ij ,E;j ,7; depend only on 0 and the mixity parameter M? and

can be determined by the numerical method described in [1]. Under these conditions, the
integrands in (4) can be evaluated in terms of two unknowns, the amplitude K and the
mixity parameter M7 , which are function of the loading level. One can write

Q)

*M
Eij MP K *M ~ *M
M _ (g detM i e+ 0 M=LIL 8
WM = [oydeit = [ oy aMP +—L_gk| @ELD @)
2 oMP 0K

The variation of the mixity parameter M” during a monotonic loading can be observed
from some experimental studies (for example, in Tohgo and Ishii [6]). However, this
variation is not very important according to the numerical and experimental studies
gathered so far. Consequently, one can suppose that this variation contributes little to the
construction of w* and then the term associated to d M ? can be neglected in (8). The
influence on the accuracy of this simplification will be discussed latter. For more
convenience, the final value of M P is taken into account in the calculations. With these
assumptions, one obtains:

2
[ode)
J*M — 0 Kﬁ+11;M

M=LII 9
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where 1M = j {n—"iaijai;M c0s6 — [sin 0@ (UM — dii™ /d0) P
-n
~ 1 .
+di™ /d0)) + ——cosB(5 M + ool lde M=LI)  (10)
¥ n+1 r rove j

The integral parameters 1,” and 1, are function of the power hardening coefficient » and
mixity parameter M.

Now let us consider the case of the small-scale yielding problem. If the radius of the
closed path is large enough, the far stress field is governed by the first term of Williams®
expansion[10]. In this case, one can easily show that for plane strain.
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*A 1'-'\/'2 2
J = I3 K}\l (M=L]II) (11)

where K; and K, are respectively the stress-intensity factors for purely mode I and mode II
cracks. The mixity parameter of the elastic far field M’ ¢ was introduced by Shih [1]:

0=0 =
M¢ =£tan'1\’lim Sep®=0) gtan 1K1
n —00,9(0=0)| = Ky

(12)

.a the case of the small-scale yielding, it is evident that

™1
Me=2an |1 (13)
T J‘II
For more general cases when the small-scale yielding condition is not satisfied, it is useful
to defined an equivalent elastic mixity parameter M*
*] .
M*e — ztan_l _J‘_ (14)
= I

It is clear that M equals M ¢ for small-scale yielding. However, M'® has not the same
definition as M, therefore, is not equivalent to M in general yielding cases. The principal
advantage of M is that it can be evaluated from two integrals at any closed circuits around
the crack tip, while the evaluation of M® requires to know the far elastic field.
The relationship between M and M? can easily be found out according to equation (14). In
fact, by substituting (9) into (14), one can write:

*I p
M =2t [T M) (15)
n 1,7 (mP)

For each mixity parameter M7, the integration parameters 1,7 and I," can be calculated
from equation (10). According to (15), the relationship M- M? is established and shown in
Fig. 1 for different hardening coefficient n. The determination of the mixity parameter

M? is then easy: the equivalent elastic mixity parameter M’ can first be calculated by
means of J” and J” according to equation (14), then the plastic mixity parameter M ? can
be obtained from Fig. 1.

NUMERICAL VERIFICATIONS AND DISCUSSIONS

In order to verify the path-independence of the J*-integral and the accuracy of the present
method in estimating the mixity parameter M”, we have carried out a numerical study by
using the finite-element modelling. The structure studied is a plane strain cracked beam
subjected to a concentrated force P. The geometry of the structure is shown in Fig. 2.

The path-independence: The path-independence of J* is verified by using severa
integrating paths with different radius. It was confirmed that J¥ and J*' are path-
independent.

The accuracy of the estimation of M*: In this work, four mixed mode loads, d/L= 0.0253,
0.0505, 0.125 and 1, are studied for both materials #=3 and 9. For each load, the equivalent
elastic mixity parameter M ¢* is calculated according to (14), then the plastic mixity
parameter M” can be found out from Fig.1. The possible errors introduced in this approach
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are related to neglecting the variation with respect to M? in the evaluation of w* and w!

cf. equation (8). In order to evaluate these errors, we calculate M ? from the local stresses
near the crack tip according to the definition of (7). The stress components Gee and o, at
the crack axis ahead the crack tip are calculated by the finite-element analysis. Fig. 3 shows
the comparison betwwen the values of M obtained from the J*-integral and those obtained
from the local stresses for #=3 and #n=9. This figure demonstrates that the present method is

quite accurate in the estimation of the plastic mixity parameter M.

CONCLUDING REMARKS

In this paper, we have presented a numerical method to estimate the plastic mixity
parameter M?” for an elastic-plastic plane strain crack under mixed mode loading. A path-
independent integral, the J*-integral, has been defined by using two sets of elastic-plastic
fields, the actual field and the auxiliary fields. The auxiliary fields can be obtained by
decomposition of the actual field into symmetrical and anti-symmetrical parts with respect
to the crack axis. With some simplifications in the calculation, this method permits a
simple evaluation of the plastic mixity parameter M P without considering the near-tip
fields. The numerical studies show that the errors due to the introduced simplifications are
not important. The results obtained by using the present method are quite accurate
comparing with the finite-elements results. This method is not limited by the small-scale
yielding conditions and can be applied to more general yielding cases.
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