The most important problems of corrosion fracture mechanics are considered. New approaches of crack growth resistance of metal determination in corrosive environment and plotting of basic diagram for lifetime calculations are proposed, as well as new methods for estimation of contribution of fatigue crack growth acceleration mechanisms in aqueous environment, threshold value of $	ext{K}_{\text{Iscc}}$, inhibitor protection of metal from corrosive-mechanical fracture and oxygen effect on corrosion crack growth resistance of metal.

INTRODUCTION

The concepts and approaches of fracture mechanics are widely used in corrosion cracking problems (1). Corrosive environment interacting with metal is considered as one of the factors, which substantially affects crack growth resistance of metal. The methodology of crack growth resistance of metal determination in inert or corrosive environment is as a matter of fact similar. Testing results under static and cyclic loadings of specimens in corrosive environment by analogy with inert one are represented by respectively SCCGR and CGGCR diagrams of material. It was established that such diagrams are noninvariant, as K unambiguously determines corrosion crack growth resistance of material and therefore they cannot be used for evaluation of structural serviceability in corrosive environment.

The aim of the paper is to report was to solve the noninvariance problem of SCCGR and CGGCR diagrams.
of material and other problems of corrosion fracture mechanics and metal protection.

Determination of crack growth resistance of metal in corrosive environment

By investigation of different metal-environment systems it has been established that noninvariance of SCCGR and CCCGR diagrams of material is caused by non-identical electrochemical conditions at the CPC tip during its growth. To take into account these circumstances a new approach was proposed (2,3), according to which \(V_G \) is determined by parameters characterizing not only the stress-strain state at the crack tip but also physico-chemical processes in time and the state of fracture surface at the crack tip, i.e.:

\[
V_G = f[C_i, K_{max}, A_1(t), A_2(t), \ldots A_j(t), B_1(S), B_2(S), \ldots B_k(S)]
\]

(1)

In case of aqueous environments equation (1) has such appearance:

\[
V_G = f[C_i, K_{max}, \phi_{H^+}, E_t]
\]

(2)

Thus, the necessary condition for plotting of the invariant SCCGR and CCCGR diagrams of material, which may be used for structure lifetime calculations, is creation of resistance testing constant electrochemical conditions at the CPC tip, i.e. \(\phi_{H^+} = \text{const} \) and \(E_t = \text{const} \).

Within the limits of new approach principally new methods (4) were worked out, which permit to perform corrosion crack growth resistance testing under constant stress-strain state and electrochemical conditions at the CPC tip, also taking into account their variations.

New methods of plotting of basic CCCGR diagrams of material

Unlike the known methods (5), more physically grounded methodology was proposed for accelerated plotting of basic curves or basic SCCGR and CCCGR diagrams of material for lifetime calculations, according to which \(V_G \) is equal to \(V_G \) under extreme service conditions (frequency, stress ratio and cycle shape, temperature) and constant electrochemical conditions at the CPC tip, similar to that on the crack surface (\(\phi_{H^+} = \text{const} \)), with correction for possible variation in stress-strain state and electrochemical conditions at the crack tip.
of the structure as compared with the tested specimen by \(\xi \text{ and } \xi \text{ coefficients}; \)

\[
\nu_{\xi c} = \nu_{\xi c} \Delta \xi_{-} \Delta \xi
\]

(3)

Coefficient \(\xi \) is determined on the basis of cyclic crack growth resistance diagrams of material in air plotted using testing data of specimens of basic \(\beta \) and maximum \(\beta_{\max} \) thickness, which provides plane strain conditions, and coefficient \(\xi \) is calculated on the basis of invariant CCGCR diagrams of material plotted using testing data of specimens of \(\beta \) thickness at extreme service conditions in given environment with \(p_{H} = p_{H} \text{ min} \) and in environment with \(p_{H} = p_{H} \text{ max} \), imitating extreme electrochemical conditions at the FCG tip.

The methodology has been used for plotting of basic CCGCR diagrams of a number of materials: reactor steels and their welds, steels for discs of steam turbines, pump rods, etc.

Methods of evaluation of LAD and HE mechanisms

It is known that LAD and HE are the main mechanisms of accelerated fatigue crack growth in aqueous environment. Taking into account these facts a model (6) is proposed according to which increment \(\Delta V \) is approximately equal to the sum of increments \(\Delta V_{A} \) and \(\Delta V_{H} \) due to LAD and HE mechanisms. Based on the graphical representation of the cyclic crack growth resistance diagrams of material in aqueous and inert environments in the logarithmic coordinate system this supposition can be written as:

\[
\log \frac{V_{c}}{V_{c}} = \log \frac{\Delta V_{A}}{\Delta V_{H}} + \log \frac{\Delta V_{A}}{\Delta V_{H}}
\]

(4)

The \(\Delta V_{A} \) and \(\Delta V_{H} \) increment values are determined according to formulae:

\[
\Delta V_{A} = \beta_{A} \cdot \Delta E_{A} - \Delta E_{A} + \Delta E_{A}; \Delta V_{H} = \beta_{H} \cdot \Delta E_{H} - \Delta E_{H}
\]

(5)

For determination of \(\beta_{A} \) and \(\beta_{H} \) coefficients special calculation-experimental techniques have been developed.

Thus, for example, for the 40Kh steel-distilled water system on the basis of the given methodology it was shown (Figure 1) that fatigue crack growth rate increment is called forth mainly by HE, which intensity increases with \(t \) decrease.
Methods of K_{isoc} evaluation

Electrochemical criterion ΔE_H was used in the calculation-experimental methods for prediction of values for given testing base (7), the main point of which is as follows.

The comparison of the electrochemical conditions at the crack tip with thermodynamic water stability diagram shows that the hydrogen evolution at the crack tip is thermodynamically possible only at positive ΔE_H values. The total amount of hydrogen evolved at the crack tip from the moment of corrosion environment introduction to the moment of crack start equals:

$$q = \int_{t_0}^{t_x} \Delta E_H(t) \, dt$$

(6)

It is established that in the logarithmic coordinate system the value q is linearly connected with K and a regression line is described by an equation:

$$q = K^m A_0$$

(7)

Thus, it follows from equations (6) and (7) that the value K_{isoc} can be determined from condition:

$$K_{\text{isoc}} = \frac{A_0}{q} \left[\frac{1}{m} \int_{t_0}^{t_x} \Delta E_H(t) \, dt \right]^{1/m}$$

(8)

The satisfactory coincidence of experimental and calculated data of K_{isoc} values for a number of metal-environment systems has been obtained (7).

Methods of evaluation of inhibitor protection efficacy

By investigation of tendencies of electrochemical pH and E_t characteristics variations during testing of steel 40Kh in distilled water inhibited by corrosion inhibitors of various principles of action it has been established that the increase of the CCCGR is caused by the decrease of LAD and HE processes intensity. Therefore for the evaluation of inhibitor efficacy we may use electrochemical criteria E_A and E_H, or their mean electrochemical parameters for LAD mechanism,

$$\overline{\Delta E_A} = \frac{1}{N_0} \int_{N_0}^{N} [\Delta E_A(N)] \, dN$$

(9)

and for HE mechanism

$$\overline{\Delta E_H} = \frac{1}{N_0} \int_{N_0}^{N} [\Delta E_H(N)] \, dN$$

(10)

454
Diagrams $\Delta E_A - \Delta E_R$ allow a new position approach to solution of the question of corrosion-mechanical fracture inhibitor choice. They may be used for determination of an optimum sort and metal structure as well as optimum inhibitor concentration for the work in the given environment.

Methods of evaluation of oxygen effect on CCCGR of material

In 80-ies investigations of oxygen effect on CCCGR of material have begun, but up till now they have not unambiguously solved this question.

For solving this problem investigations of C effect on pH and E_t were performed which showed that variation tendency and their values are very much depended on C. It means that C varies LAD and HE intensity mechanisms. Therefore for evaluation of this effect electrochemical parameters ΔE_A and ΔE_R may be used, as it was done at working out the optimum C value determination methods. Application of these methods for 40KhN2MA steel-distilled water system in particular showed (Figure 2) diverse influence of oxygen on LAD and HE processes intensity, and if the restriction of these processes is desired, optimum variable oxygen concentrations may be determined; from the standpoint of LAD C is to be strictly regulated, from the standpoint of HE it may be considerably relaxed.

As ΔV_c value is directly connected with LAD and HE mechanisms thus it allows to assess C effect on SCCGR and CCCGR of material.

SYMBOLS USED

$A_i ... A_j$ = parameters defining physicochemical processes at a crack tip

A_0 = coefficient

L_e = coefficient taking into account structure thickness effect

L_c = coefficient taking into account the effect of extreme electrochemical condition at the crack tip

$B_1 ... B_k$ = parameters characterizing the state of the fracture surface

S_0 = basic specimen thickness
β_{max} = maximum specimen thickness

β_A = characteristic of metal-environment system under the influence of LAD

β_H = characteristic of metal-environment system under the influence of HE

c, c_1, \ldots, c_i = material constants

ΔE_A = electrochemical criterion of LAD

ΔE_A = mean parameter of ΔE_A

ΔE_H = electrochemical criterion of HE

ΔE_H = mean parameter of ΔE_H

ΔV_{e} = increment of fatigue crack growth rate

ΔV_{e} = increment of fatigue crack growth rate due to LAD

ΔV_{H} = increment of fatigue crack growth rate due to HE

E_e = metal electrode potential at the crack tip

E_s = metal electrode potential on the specimen surface

E_x = potential of equilibrium hydrogen electrode

f = frequency

K = stress intensity factor

K_{max} = maximum stress intensity factor

$K_{ ISC}$ = threshold value K under static loading

m = coefficient

N = number of loading cycles

N_{av} = basic number of loading cycles

pH_e = hydrogen ion exponent of the environment at the crack tip

pH_c = hydrogen ion exponent of the environment at the chamber

$pH_{t, min}$ = minimum value of pH_e

q_e = amount of hydrogen evolved at the crack tip from environment

s = fracture surface

t = time

t_0 = time of the beginning of the hydrogen evolution
t_x = time of the crack start
t_c = time of prediction
V = fatigue crack growth rate in inert environment
V_{lc} = fatigue crack growth rate in corrosive environment
V_{lc} = value V_c at basic CCOGR diagram of material
V_{lc} = value V_c in basic specimen
SCCOGR = static corrosion crack growth resistance
CCOGR = cyclic corrosion crack growth resistance
CPC = corrosion fatigue crack
LAD = local anodic dissolution
HE = hydrogen embrittlement

REFERENCES

Figure 1 Influence of frequency on LAD and HE mechanisms.

Figure 2 Influence of oxygen on LAD and HE mechanisms