ON PATH-INDEPENDENT INTEGRALS FOR DYNAMIC FRACTURE

J.C.W. van Vroonhoven?

Geometries with dynamically propagating cracks can be
analysed with the use of path-independent integrals.
Explicit calculation of these elastodynamic integrals in
terms of dynamic stress intensity factors and the crack-
propagation velocity reveals a dependence on the shape
of the path inside the fracture-process zone. This fact is
contrary to prior results presented in the literature. The
differences, however, remain small for crack-propagation
velocities up to 0.6 times the shear-wave speed.

INTRODUCTION

The concept of the energy release rate, based on the existence of a critical
surface energy to initiate fracture, has found a wide range of application for
crack-growth predictions in both static and dynamic fracture situations. As
a generalization of the static J integral of Rice [1], Nishioka and Atluri [2]
introduced elastodynamic integrals J; having the meaning of an energy release
rate. These integrals are defined on an infinitesimal contour encircling the
crack tip and lying entirely inside the fracture-process region. Expressions
for arbitrary contours at remote positions are also presented in (2] and the
elastodynamic integrals have been shown to be independent of the choice of
these remote contours.

Nishioka [3] has claimed by numerical investigation that the integrals Ji
are independent of the integration contour inside the fracture-process zone.
In the present paper it is shown by analytical evaluation for two distinct
contours that the elastodynamic integral J5 does depend on the infinitesimal
path. The obtained results for the respective contours are compared with the
results of [2, 3] and the differences are examined.
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ELASTODYNAMIC INTEGRALS

Consider a body of a linearly elastic material containing a dynamically prop-
agaling crack. The singular stress field only depends on the instantaneous
crack-propagation velocity and not on the crack curvature as has been shown
by Achenbach and Bazant 4] and Freund (5, Ch. 4]. Consequently, the model
of a half-plane crack propagating at velocity ¢ may be employed.

We introduce moving cartesian and polar coordinates x; (1=1,2,3) and
7, 0 with origin O attached to the crack tip. The compatibility equations,
the momentum equations (including acceleration terms) and the constitutive
relations have a singular solution for the stress components ¢;;. These stresses
and the corresponding displacements u; depend on the polar coordinates and
the crack-growth speed ¢ according to

Kt 2r Ku
o= 2 400, W=y, H O g

where s is the shear modulus and K are the dynamic stress intensity factors
for mode M (M = I, II, I1I). The functions f}(6,c) and gM(0,c) are well-
known and given in e.g. [2] or [5, Ch. 4). 1t is noted that the singular fields
only apply near the crack tip and inside the region where the fracture process
takes place.

Nishioka and Atluri [2] introduced the elastodynamic integrals

J, = lim /F (W + T)ni — ognuig)ds  (k=1,2), )

where the accent is used to distinguish from the static integrals. TI'c is an
infinitesimally small contour inside the fracture-process zone surrounding the
crack tip and with outer normal vector ny, see Fig. 1. The elastic energy
density is W = %a.-js,-J and the kinetic energy is T' = %p'b.,»'&,- where p is the
density of the material. The notation 4 and the superposed dot indicate the
derivatives with respect to Tg and time t, while the Einstein convention of
summation over repeated indices is used.

For an arbitrary contour I and curves I's along the crack faces, see Fig. 1,
the following expression is obtained (2} ' <

Jp = lim {/ (W + T)nx — o) ds
e—0 LJr+rs
v (pi - piin)dA} (=12, @)
—A.
where A is the domain bounded by I + I's and the crack faces, while A, is

bounded by I', and the crack faces. The boundary of the difference A-— A,
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is the composed contour T + s — T The path independence of (3) can
be verified by taking two contours I'; and T’z and subtracting the respective
integral expressions. With the use of the internal equations, it is derived that
the difference Jilp, = Ji|p, vanishes.

It is emphasized that ihe same contour I'c near the crack tip must be
chosen for both integration paths. This fact is not as clearly mentioned in
[2], but the dependence on I'¢ can become significant. Since the integral Jj is
not influenced by the infinitesimal contour, see 3], only the effects on J; are
further investigated below.

EXPLICIT CALCULATION

Dilatational and shear waves play an important role in dynamic fracture. The
respective wave speeds are equal to ca = /21 —-v)/(1 - 2v)and ¢, = Ju/p
with v being Poisson’s ratio (2, 5]. The following velocity-related parameters

are introduced
By = /1 —(c/[ca)® B2 = /1 — (c/cs)? (4)

and also the Rayleigh function
D = D(c) =412 — (1 + B (5)

For the evaluation of the integral Jj as defined by (2), & rectangular con-
tour is chosen inside the fracture-process zone surrounding the crack tip, see
Fig. 2. After the substitution of the singular stress and displacement fields
(1), the limit for § — 0 is taken first and then for ¢ — 0. This calculation
results in

B o= (B —ﬁ2)(1ﬂ—1_32522)K1K” «
2y2
x </(ﬁl e Pf}-ﬁ;fl 0 o+ ﬂf)) .®

On the other hand, evaluation of (2) for a circular contour yields [2]

_(Br= B)(1 — B2°) KiKn <
uD?
2+ fy + B2) 4512 + (1+ B2)*
@+p+pP) 4Pt U T V]
X ( [ ] —2(1+p2%) ) - (M
2/(1 + B1)(1 + B2)
It is obvious that expressions (6) and (7) do not coincide. This finding
is at variance with the conclusion of Nishioka [3] who asserted on the basis

of a numerical investigation that the elastodynamic integrals Jj would be
independent of the infinitesimal contour inside the process region.

By =
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DISCUSSION OF ESULTS

The results for Tectangular (6) and circular contours (7) are plotted in Fig. 3
for a Poisson’s ratio of 0.30. The integrals have been normalized to their
values for zero crack-growth speed c.q. the value for static fracture J2 =
—(1-v)/p K 1 K1. Although the curves are close to each other, the relative
difference between both expressions increases rapidly when the Rayleigh-wave
velocity ¢r = 0.9274 ¢, is approached, see Fig. 4.

On the other hand, this deviation is not more than 1% (or 5%) for crack-
propagation velocities up to 0.65¢s (or 0.80 Cs)- Consequently, both formulas
(6) and (7) are equivalent and may be used interchangeably. The numerical
errors in the computed values of the integrals in (3] are probably in the same
range as these small deviations. In addition, only velocities up t0 0.6 ¢; have
been investigated in (3]. The combination of these two facts may explain
why the dependence on the shape of the infinitesimal contour was not de-
tected and also the subsequent erroneous conclusion of path invariance of the
elastodynamic Jj integral.

The analysis above leads to the following conclusions:

1. Contrary to Jj, the elastodynamic integral J; is dependent on the shape
of the small contour inside the fracture-process zone.

9. The deviations between the expressions for rectangular and circular
contours remain relatively small for low crack-propagation velocities.

3. For crack-growth speeds approaching the Rayleigh-wave velocity, the
differences become increasingly significant and further investigation of
the integral J is required.
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Figure 1. Integration contours surrounding the crack tip.
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Figure 2. Contour for evaluation of Jj.
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Figure 3. Variation of expressions (6) and (7) for integral Jp.
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Figure 4. Relative difference between expressions (6) and (7).
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