An experimental method for determination of the partitioning point \(K_{pf} \) is described which partitions \(\Delta K \) into an effective and an ineffective part as far as fatigue crack propagation (FCP) is concerned. The experimental method relies only on the FCP behavior itself. \(K_{pf} \) data as a function of fatigue loading conditions \((K_{eff}, R) \) are presented for A17475-T7351 and a Ni-base alloy Microfer 5219 Nb.

INTRODUCTION

There are numerous investigations which lead to doubts Elber's concept (1) that closure be the physical cause for the existence of \(\Delta K_{eff} \), namely the reduction of the applied \(\Delta K \) to an effective one in respect to fatigue crack propagation (FCP). For clarification, closure comprises all phenomena associated with the fracture surfaces of a propagating fatigue crack which in concert act as a wedge between the fracture surfaces. Closure thereby modifies the loading conditions. On the assumption that a fatigue crack propagates only if tensile stresses act on the crack front, Elber postulated that the end of the wedging action of closure be the start of the effective part of the loading cycle \(\Delta K \). This partitioning point of \(\Delta K \) is commonly denoted as \(K_{pf} \).

* DLR - German Aerospace Research Establishment, Institute for Materials Research
\[\Delta K_i = K_{i+1} - K_{i-1} \]

(1)

\[\Delta K_{eff} = K_{eff} - K_0 \text{ if } K_{eff} > K_{eff} \]

(2)

\[\Delta K_{eff} = K_{eff} - K_0 \text{ if } K_{eff} > K_{eff} \]

(3)

Equations (2) and (3) are not quite correct, if Elbers preposition

\[\Delta K_{eff} = 0 \text{ no FCP} \]

(4)

\[\Delta K_{eff} > 0 \text{ FCP} \]

(5)

is accepted. This is due to the existence of a closure-free threshold \(\Delta K_0 \) (2) in the stress intensity range \(K_{eff} \) (3). Then, Eqs. (2) and (3) have to be written as:

\[\Delta K_{eff} = (K_{sat} - K_0) - \Delta K_0 \]

(6)

\[\Delta K_{eff} = (K_{sat} - K_0) - \Delta K_0 \]

(7)

In the scientific literature, the compressive stress field in the cyclic plastic zone and associated phenomena are often referred to as closure, too. Schijve and Broek (4) explained their results from overload experiments on Alclad 2024-T3 by compressive stress fields produced in the plastic zone. Yet, it is not clear by which phenomena cyclic plastic deformations should be prevented from producing additional damage during the lower part of a loading cycle.

Doubts about the closure concept as cause for the existence of \(\Delta K_{eff} \) by Hertzberg et al. (5) were based on the fact that "artificial" closure was not reflected in the appropriate way by the respective FCP-rates. Similarly, determination of the partitioning point \(K_0 \) by means of a "growth versus no-growth" criterion (6, 7) furnished values agreeing with semi-empirically determined values, but not with measured closure values.
THEORY OF K_t TESTING

The K_t test method determines K_t for a certain cyclic loading condition characterized by K_{N1} and K_{N2} (Fig. 1). The fatigue crack is initiated from the tip of a notch under the cyclic loading conditions selected for the first K_t test. This initial crack is propagated under the same cyclic loading conditions up to a presellected crack length, i.e., a preselected Δa. If the crack reaches the preselected crack length, the actual K_t test starts as graphically shown in Fig. 1. The K_t test relies on the criterion "FCP versus No FCP". The test procedure is based on the idea:

\[
\begin{align*}
\text{if } \Delta K_{eff} = 0 & \quad \text{no FCP can occur} \quad (4) \\
\text{if } \Delta K_{eff} > 0 & \quad \text{FCP must occur in every cycle} \quad (5)
\end{align*}
\]

The theoretical basis is the modified (3) Elber-equations (6) and (7) and a closure-free FCP threshold ΔK_t as shown in Figs. 2 and 3 for Al7475-T7351 and the Ni-base alloy Inconel 6219 Nb. It should be noted that the small amplitude in Fig. 1 acts only as a probe. The test procedure uses a ΔK_j for the small amplitude of

\[
\Delta K_j = Z \cdot \Delta K
\]

Depending on the material, "Z" may be chosen 1.1 to 1.5, i.e., such that ΔK_j is equal to ΔK_t plus 0.1 to 0.5 MPa(m). The big advantage of using such a small amplitude as a probe consists in the small FCP rates ($10^{-9} < da/dN < 5 \cdot 10^{-3}$ [mm/cycle]) once the fatigue crack starts to propagate. This allows to obtain up to 10 determinations of K_{N2} on a C(T) specimen with $W = 50$ mm.

Theory and practice are not always identical, as is valid for statements (4) and (5). While in theory simple and plausible, in practice one has to define "No FCP" as all FCP-rates equal to and below $6.6 \cdot 10^{-3}$ mm/cycle. But, due to experimental limitations, even this definition is not sufficient. In addition the FCP-rate $6.6 \cdot 10^{-3}$ mm/cycle has to be averaged over a crack growth interval of 0.1 mm; this corresponds to averaging over 1.2 Million cycles or more. If FCP is detected at a fatigue loading condition $\Delta K_j = K_{N1} - K_{N2}$ then the K_{N2} of the previous loading condition is determined at which no FCP occurred.
Via Eq. (6), K_{ij} is determined

$$\Delta K_{ij}^{\text{eff}} = 0 = (K_{ij}-K_{ij}) - \Delta K$$ \hspace{1cm} (9)

$$K_{ij} = K_{ij} + \Delta K$$ \hspace{1cm} (10)

where ΔK corresponds to K_{iu}; (see Figs. 2 and 3).

EXPERIMENTAL RESULTS AND DISCUSSION

The results of the K_{ij} determinations on Al7475-T7351 are shown in Figs. 4 and 5 plotted versus K_{ij} and plotted versus ΔK, respectively. In each figure, the K_{ij} data for different R-ratios (from 0.1 to 0.75) have a linear relation to K_{ij} and to ΔK; the slope of the lines increase with increasing R-ratio. The lines pass through the origin. Similarly, the K_{ij} data for Nicrofer 5210 Nb are plotted versus K_{ij} in Fig. 6. Here again, the K_{ij} data for each R-ratio have linear relationships to K_{ij} which pass through the origin. The K_{ij} data normalized by division through K_{ij} are plotted versus R-ratio in Fig. 7. In addition to the materials investigated, the K_{ij}/K_{ij} data for Inconel 617 and Ti 6AI 4V are shown which were investigated previously. It can be seen from Fig. 7, that the experimentally determined K_{ij} values agree quite well with values determined semi-empirically via $da/dN = \Delta K$ data. The assumption is made in such semi-empirical analyses that above R-ratios of approximately 0.7 to 0.75 the ΔK becomes effective in its total range, i.e., $\Delta K = \Delta K_{ij}^{\text{eff}}$.

By analysis of the K_{ij} data presented, it can be seen that a partitioning point K_{ij} exists up to very high R-ratios and very high K_{ij} values. This fact can not be reconciled with Elber's original closure idea as reason for the existence of such a partitioning point in ΔK. Therefore, the author proposes not to use the descriptor K_{ij} in connection with ΔK_{ij} and investigate the influence of closure on FCP and the partitioning of ΔK independent of each other. The author proposes to use K_{ij} as descriptor of the partitioning point which is the lower limit (Grenz-) point for the ΔK_{ij} range. In this way, no definitive physical model is attached to the partitioning point; any model could be wrong at the present state of knowledge.
SUMMARY

An experimental method is presented which allows determination of the partitioning point \(K_p \) (\(K_m \)) which divides \(\Delta K \) into \(\Delta K_p \).

The \(K_m \) results found for Al1717S-T7351 and Microfer 5219 Nb agree quite well with data determined semi-empirically via \(dK/dN - \Delta K \) curves.

The \(K_p \) values determined do not agree with closure data measured via COD (CMOD) or back-face strain signals.

REFERENCES

424
Fig. 1: Test method for K_{op} determination

Fig. 2: Closure-free threshold ΔK_{th} for Al7475-T7351

Fig. 3: Closure-free threshold ΔK_{th} for Ni-base alloy Microfer 5219 Nb

Fig. 4: Measured K_{op} values as function of K_{max} for Al7475-T7351

Fig. 5: Measured K_{op} values as function of delta K for Al7475-T7351