DYNAMIC FRACTURE AND CRACK ARREST BEHAVIOUR OF A PIPELINE
STEEL INVESTIGATED WITH A NEW SPECIMEN GEOMETRY : THE RING
TEST

T. IUNG*, M. DI FANT** and A. PINEAU*

A new test specimen geometry was deviced to investigatc
unstable crack propagation and crack arrest, as well as stable crack
growth. This geometry is a cracked ring which is subjected to a
compressive load applied at its poles while the crack is located in
the equatorial plane at the outer surface of the specimen. One of
the main interests of this geometry is the variation of the K factor
with crack length which follows a bell-shaped curve. This allows
to control the crack velocity by adjusting the initial crack length.
The behaviour of a pipeline steel was investigated at 77 K using
this test specimen.

INTRODUCTION

Safety consideration for pipelines or nuclear pressure vessels has led to the study of
dynamic crack propagation and crack arrest. The standard A.S.T.M. procedure (1)
recommends a static analysis of wedge-loaded Compact Crack Arrest (C.C.A.)
specimens. But some authors have shown that dynamic effects (2,3) (kinetic encrgy,
wave reflection, inertia...) as well as experimental details (4) (control of the pin
loading system and specimen preparation which requires a spot-welded notch) have
to be taken into account in the analysis of the test results.

In this paper, we describe an original experiment of dynamic crack propagation
and crack arrest. The geometry, a cracked ring, was already tested in thermal shock
cxperiments (4, 5). In the present study, our tests are isothermal and carried out at
liquid nitrogen temperature. As recommended by the A.S.T.M., a static approach
has been used to analyse the ring test and then to determinc the Ky, valuc of a

pipcline mild stcel. Quantitative observations of the microdamage in the wake of
propagating cracks were made. y
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could be measured, the maximum crack speed was found to be between 250 and
920 m/s. The highest speeds were obtained with the shortest cracks, as expected,
since in this case, the energy available for crack propagation is more important.

Crack arrest fracture toughness, Ky,

The fracture surfaces were heat tinted (300°C for 1 h) before opening the specimen.
The arrest front is then easy to differentiate. The length at arrest is determined as
recommended in Kje A.S.T.M. standards (7).

Knowing this value, the stress intensity factor at arrest deduced from figure 2
gives the crack arrest fracture toughness of the steel by adopting a static approach.
All the results are reported in figure 4. These results show a large scatter which is
discussed in the following. It is observed that if the maximum crack speed is lower
than 400 or 500 m/s, Ky is of the same order as K[.. Beyond 500 m/s, Ky
decreases strongly to reach values which are very close to zero. It is worth noting
that these low values were obtained for the smallest cracks which arrested at crack
length corresponding to the steepest gradient of the K-\ curve.

METALLURGICAL OBSERVATIONS

Macroscopic unbroken ligaments were observed on the fracture surface of a number
of specimens. This observation has alrcady been reported by other authors (e.g. 3). It
is felt that this is one of the explanation of the scatter in Ky value. Indeed, two
specimens exhibited a maximum crack speed of 650 m/s giving two widely
different values of K,. A lot of unbroken ligaments were found on the first one's

fracture surface (K = 35 MPay/m) whereas none could be scen on the second onc's

Kia=5 MPa\[r—ﬁ). These ligaments give risc to a crack tip shielding effect. The
origin of this phenomenon is not yet fully understood.

Microscopic damage located just below the fracture surface was also examined
on tranverse sections by optical and scanning eclectron microscopy. Cleavage
microcracks were observed along the crack path (figure 5). After polishing and
slight ctching, the linear density was measured (figure 6). The cracks are all the
more numerous as the crack speed is high, their size being constant.

Mechanical twinning was also observed under the fracture surface as shown in
figure 5 where it is noticed that one cleavage microcrack was nucleated at the
intersection of two twins. It is well known that mechanical twinning is initiated at
very low temperatures and very high strain rates. High strain ratc compression tests
(¢ = 1200 s~1) were carried out on’our matcrial at 77 K by using Hopkinson bars
but no twins could be obsecrved after deformation. This suggests that the strain rate

at the tip of a moving crack might be significantly larger than 103s-1.
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CONCLUSION

1. The ring test presented in this study proved to be a very convenient way to study
dynamic crack propagation and crack arrest. The crack velocity can be controlled by
adjusting the initial crack length. In this study, maximum crack speeds of 920 m/s
were reached.

2. The values of crack arrest fracture toughness, Ky, s inferred from a static
approach show, in spite of a large scatter, a clear tendancy to decrease when the
crack velocity is increased. Extremely low values of Kj, are obtained when the
crack speed exceeds 500 m/s.

3. The microdamage in the plastic wake of the propagating crack characterized by
the presence of secondary cleavage microcracks is related to the crack velocity. In

particular, the number of microcracks is an increasing function of crack speed.

4. Mechanical twinning was observed in the plastic wake of propagating cracks.

This suggests that the strain rate ahead of a propagating crack might be larger than
1200 s71.
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