A CALCULATION OF THE EFFECTIVE AK UNDER VARIOUS FATIGUE
LOADING CONDITIONS

J.Zuidema!

A crack closure model is described which can calculate the
effective AK under different loading conditions. To test the
model it has been applied on 8 constant amplitude fatigue tests
with R (=Kpin/Kmax) values extending from 0.1 to 0.7. The
material used is Al-2024 T351. The crack growth rate da/dN is
calculated from the measured a (crack length) and N (number
of cycles) data. The AKgg value for each test is calculated,
using the crack closure model, as a function of the crack
length a. All tests at different R values coincide to a single line
when da/dN is plotted against AKg. For comparison the test
results have been plotted against the applied value of AK and
also against the AKgg values using the experimental crack
closure functions of Elber (1) and Schijve (2).

N D ION

The fatigue crack growth rate, da/dN, is assumed to be a function of AK and R.
In practice the combined effect of AK and R is often presented in a crack
closure formula AKg. da/dN is assumed to be only a function of this AKefr.
For Al-2024 Elber (1) found:

AK,; =(0.5+0.4R)AK -0.1<R<0.7 1
The AKefy, used in this paper, is defined as:
AKeﬂ = Km:x - Kcl (2)

Kmax is the maximum value of K, corrected for plasticity at the crack tip. Kc]
is the calculated minimum value of the sum of two mode I stress systems:

Ky= Ko+ [dK ©)
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where Kpin = RKmax and JdK is the contribution to Kel of the compressed
crack flanks. The integration sign is used because the crack flanks are divided
in a number of compressed clements.

A T F AK-EFFECTIV

As shown in eq(2) the values of Ky and K are needed in the calculation of
AKepp, At first Kmax Will be calculated. For the calculation of K the formula
for a genlrc—grackcd (ension specimen (width w) is used:

K = o |sec == @)

w

In metals the fatigue crack growth is accompanied by plastically deformed
material on the crack flanks due to the high stress concentration at the crack
tip.Irwin (3) found that the plastic zone size at the crack tip could be given as:

n\ Oy

2

2r,= -L(-IE—"M"—") (plane stress) )
Kmnax,applied is the maximum value of the applied K, Oys is the yield stress of
the metal and rp is the radius of the (circular) plastic zone. Irwin pointed out
that the crack behaves as if it were rp longer due to the plasticity. The new
crack length corrected for plasticity thus becomes a+Tp instead of a.
According to eq.(4) this will give a higher K (and thus a higher Kmax)- On its
turn this higher Kmax will give a higher rp, etc. When the crack length and the
plastic zone sizc are not too big this iteration of rp and Kmax Will converge t0
stable end values. From now on the stable end value of the maximum K will be
nominated Kmax » while the applied maximum value of K is nominated
Kmax,applied- Kmax is thus solved by an itcration procedure using egs.(4) and
(5). For constant AK and R tests Kmax,applicd is simply constant; for a constant
amplitude test *Kmax,applied increases with crack length a as given in eq.(4). In
Fig. 1a calculation of Kmax for a few discrete values of constant Kmax,applied
is shown as a function of crack length a.

The calculation of K¢ is more complex. Consider the situation of a c.C.L
specimen (Fig.2) At maximum stress (i.e. at Kmax) the crack is fully open.
Suppose that the R-value is such that closing of a part of the crack flanks starts
betore Kmin = RKmax is reached. In order 10 calculate the value of Ke the
material along the crack growth direction is scparated in clements with a length
da (scc Fig. 3).In Fig. 3 the clastic contour is the contour of the crack as it
would be without plasticity induced closure. On both crack flanks the material
clements have a length Alin a stressless state. In a closure situation Al will be
compressed until half the crack opening V lcading o a compressive stress in

this clement. This compression stress will give a contribution dK to the K
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resulting from the external stress ¢ and will enhance the tensile stress in the
remaining ligament. The value of K¢j can be found as the sum of all dK’s of all
compressed parts and the value of Kpin:

K=Ky +[dK (6)

As a first calculation step it is assumed that the width of the elastic contour at
K = Kmin is given by Kmin. The lengths Al of the plastically deformed crack
flank elements result from crack tip plasticity at K = Kmax. A big compression
of a number of elements will be the result at K = K. This cannot be a steady
state value as the closure term, JdK, together with Kpin, influences the width
of the elastic contour, i.c. the elastic contour becomes wider. This leads to
lower compression stresses in the elements and thus a lower JdK. So, the
closure K, K|, decreases, resulting in a more narrow clastic contour of the
crack. This, however, will again increase the compression stresses and thus JdK
and K¢, etc.

The calculation process is performed as just described. After a number of
iterations a stable K¢ value can be reached. The iterations stop when the
difference in JdK between two calculation steps is less than 104 times the
applied AK. To avoid large numbers of iterations in some cases a maximum
number of 20 has been chosen. In most cases the number of iterations that is
needed to satisfy the criterion is much smaller.

CALCULATION DETAILS

Details about the unstressed element length Al ,the formula used for the elastic
contour , effects of thickness (plane strain/plane stress) and effects of shear lips
will be discussed in a forthcoming paper (Ref. 4 ).Here only a few formulae
are presented as used in the model. Al is based on the crack opening value
(ctod) at K= Kpay:

o
Al = —;— ctod — -?” r, (plane stress approximation) (@)

The elastic crack contour is assumed to be elliptical (Fig.3). The long axis of
the ellipse is assumed to be 2(a + rp) with rp resulting from eqgs.(4) and (5).
The short axis of the ellipse is taken from Tada et al (5).In the calculations the
plane stress Al of eq.(7) is corrected for plane stress/plane strain as:

Al = Al(plane stress)/ a (®
a varies from 1 (plane stress) to 3 (plane strain).In the calculation the stresses
in the clements are considered elastic due to the geometry of the closing part.
The thickness Al is very small compared with the other dimensions. A shear lip
correction of the AK g found is applied using the results found in reference 6 .
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VALIDATION OF THE MODEL

The AKegr calculation model is tested using the results of constant amplitude
tests performed on c.c.t. specimens of Al-2024 T351. Eight tests with different
R-values were performed at 10 Hz. First the da/dN versus a data arc obtained
from the mcasurcd a-N data for all tests performed. Then the crack closure
model is uscd to calculate AKerr versus a for all tests performed. Hereby the
calculation is performed inclusive the prefatiguc zonc ,as this zonc of coursc
has an influcnce on the amount of closurc in the constant amplitude test (scc
Fig.4). It is assumed that there is no crack closure before the prefatiguc is
applicd. By climination of the crack length a, da/dN versus AKerr is found.
When the model works well it should be expeeted that at the same measurcd
da/dN the same value of calculated AKpr will be found. The combined test and
calculation results are shown inFigure 8. For comparison the da/dN test results
have also been plotied against the applicd AK and AKerr using Elber's and
Schijve's experimentally found crack closure formulae in Figures 5,6 and 7.

CONCLUSION
The model works well for constant amplitude tcsts.
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figure S. da/dN versus AK as measured
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figure 7. da/dN versus AKefl using the crack
closure relation of Schijve

10
da/dN
@m/c)
4
Vi
1 .
y 4
,
7
A
107! .
7
7
/
L/
102
] 10
AKeff (MPavm)

figure 6. da/dN versus AKef[ using the crack
closure relation of Elber.
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figurc 8. da/dN versus AKelT using the crack
closure calculation model
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