ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

ON J-INTEGRAL AND J-INITIATION VALUES AS MATERIAL PARA-
METERS IN THE FIELD OF ELASTIC-PLASTIC FRACTURE MECHANICS

Roos, E., Eisele, U., SeidenfuB, M., Silcher, H."

In the field of elastic-plastic fracture
mechanics (EPFM) several fracture mechanics
characteristic values can be determined
according to different test standards or
proposals. These characteristic parameters
are evaluated from Finite-Element (FE)-
calculations of CT-specimens, on the basis
of damage models, and then compared with the
theoretical result.

The influence of specimen geometry and size
on the Jy-curve is shown for different large
scale specimens, and these are compared with
Jp-curves of CT-specimens. .

MATERIAL PARAMETERS

The most commonly used elastic-plastic fracture mecha-
nics (EPFM) characteristic parameter is J;_, according
to ASTM E 813. The formerly used evaluating procedure
[1] was modified in 1987 [2]. In [2] the equation to
evaluate J was modified as well as the regression line
approximation method. An additional standard for eva-
luating Jz-curves was also established [3], using a
different procedure for calculating the J-integral. At
the same time EGF [4] and DVM [5] have made proposals
for the determination of elastic-plastic fracture
mechanics parameters based on other definitions. This
has led to a broad scatterband of J-Aa-values for the
same CT-specimen. All these standards and proposals are
based on a power law fit to characterize the course of
the crack-resistance behaviour, i.e. the Jy-curve. The
material parameters are derived from the intersection
of the Jy-curve with blunting- or offset-lines. One
effective fracture mechanics characteristic value,
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named J; [5, 6], is derived by a vertical cut of the
Jy—curve with an offset line Aa = Aa,, which is the
width of the stretched zone. Hence, with this parame-—
ter, only the section of the J,-curve representing the
blunting of the crack tip is used. This ’stretched
zone’ is usually ignored by the other procedures.

FINITE ELEMENT (FE) ANALYSIS

Using FE-calculation with the damage model acc. to [7]
which incorporates crack extension in the model, the
load-COD-curve of a CT-specimen was calculated. This
was a CT-25 specimen made of a low alloyed 20 MnMoNi 55
fine grain structural steel. This calculated curve fits
very well with experimentally determined curves of two
CT-25 specimens. The J-8a-curve was also calculated
from the virtual crack extension (VCE) method [8] using
the far field J [9]. This method also fits well with
experimental results, see Fig. 1. The evaluation proce-
dures given in the test standards and proposals can be
prooved using calculated F-COD results as input. In
Table 1, J-values are summarized for initiation and
maximum crack extension. This prooves, that the proce-
dures acc. to [5, 6] and [10] are close to the theore-
tical results, see also Fig. 1.

CT-25 specimen J J Devi-
(initiation) |(8a=4.1 mm ation
N/mm N/mm %
VCE - 1552 0
ASTM E 813-81, J,. 172 1378 -11
ASTM E 813-88, J,. 822 1528 -2
ASTM E1152-87 - 1390 -10
EGF, J, , 371 1498 -3
EGF, Jy .51 644 1498 -3
MPA, J; 327 1595 +3
DVM, J. 327 1641 +6

Table 1: J-values, determined from a calculated F-COD-
curve, on the basis of damage models

INFLUENCE OF SIZE AND GEOMETRY

To investigate the influence of specimen geometry on
the Jy-curve, several large scale specimens, (cross
section up to 200 x 500 mm?) were tested and there
resistance curves were evaluated. The specimens were
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made from modified 22 NiMoCr 3 7 fine grain structural
steel. It can be seen in Fig. 2, that the J-ba-curve
determined acc. to the n-method [10] depends strongly
on the specimens size and geometry.

The effective J;-value, however, determined using the
stretched zone width, seems to be independent of
specimen geometry and size within the scattering of the

material, Fig. 3.

SENT-specimens of the same size but made from materials
of varying toughness (22 NiMoCr 37, ¢c, =907,

22 NiMoCr 3 7 mod, C, = 40 J and 20 MnMoNi 5 5

C, = 200 J in the upper shelf of the C,-T-curve) tested
at these conditions show an evident dependence on the
materials toughness, Fig. 4. The specimen of the low
tough 22 NiMoCr 3 7 mod yields small J-values, small
crack resistance and small stable crack extension. The
SENT-specimen made of the high tough material

20 MnMoNi 5 5 however yield high J-values, a higher
crack resistance and more stable crack extension. This
behaviour can be gquantified by the course of the
quotient of multiaxiality q. Low g-values mean a high
multiaxiality and reduced crack extension.

CONCLUSIONS

It could be shown, that J-procedures according to
different test standards and proposals yield different
characteristic values. Certain procedures are relati-
vely close to the theoretical solution which was deter-
mined on the basis of a damage model using the far
field J-value.

Cracked large specimens show a considerable influence
of the stress state on the course of the Jp-curve. In
contrast, the effective crack initiation value J; is

independent of these effects.

If one geometry is regarded, the material toughness has
a dominant influence on the crack resistance behaviour.
With increasing toughness the J,-value and the crack
resistance increases. This can be explained with the
gquotient of multiaxiality q.
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Fig. 2: Jg-curves of specimens of different
geometries, 22 NiMoCr 3 7 mod., 80°C
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