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THE STRUCTURAL LIFE PREDICTION UNDER CRELP
OR HIGH-CYCLE FATIGUE CONDITIONS

Y,Samarin*, V.Astafjev**, V.Maclakov, V.Semenychev*

A concept of structural design and struc-
tural operation under technical state con-
ditions for creep or high-cycle fatigue is
suggested. The general aspects of this
concept are

(i) the description of deformation process;
(ii) the analysis of failure associated
with creep rupture, high-cycle fatigue,
crack initiation and propagation;

(iii) the establishment of appropriate
design criteriaj;

(iiii) the control and identification of
structural responces.

INTRODUCTION

Components of the structures in high temperatures have
a finite lifetime caused by time dependent deformation
of material (creep). Failure could also occur under
cyclic 1loading (fatigue). Improved inspection methods
reveal the presence of cracks in components. The crack
may result from manufacturing or may be formed under
service conditions., Cracks could be initiated by ther-
mal or mechanical loading or nucleated from coalescing
microvoids. Design methods must be able to predict the
lifetime under these circumstances, Hence, understan-
ding of the growth of defects and deterioration of ma-
terial has to be improved. The development of creep
mechanics has been given by Rabotnov (1). The later
developments are found in the textbook byBoyle and
Spence (2)., The theory of deformation and fracture
%n§er cyclic loading has been described by Troshchenko
3)e
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CONSTUTIVE EQUATIONS AND DAMAGE LAWS

donstitutive equations. The description of first and
second stage o% deformation under creep conditions is
based on the theory of incomplete recovery, proposed
by Samarin (4)

p(t) = u(t) + v(t) + w(t)

u = Zuk, l.lk = dk((1-f)al{as - uk) 00000000000(1)
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ka, Ve = dk(fako’ - vk)H(fak@ - vk)
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v
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where p, u, v, w are creep, recoverable viscoelastic,
unrecoverable viscoplastic and viscous strain (Fig. 1),
H is the Heavyside function, the dot means time deri-
vative, Analogous constutive equations based on tenso-
rial state variables follow from Astafjev (5).

The constutive equations (1) can also describe the
first and second stages of deformation under high-cyc-
le fatigue, where p = 4§ is the width of inelastic
hysteresis loop and G = (G _ is the amplitude of stress
under symmetric cycle (Figlire 2).

The equations (1) with stochastic coefficients are
offered to describe the behavior of a set of identical
members (@ and p is the generalized force and displa-
cement in this case)., For individual member a model
with measured responces at the beginning of the creep
curve is built by Eremin et al (6) (Figure 3).

Creep damage laws. As proposed in ref, (5) and by
Radchenko et al (7) the constitutive equations (1) are
valid for description of the third stage of creep de-
formation by replacing the stress G on the "effective
stress" @ /(1 -=w). The creep damage parameter «
changes in accordance with the evolution equation of
Kachanov-Rabotnov (1)

d) = A(G/(" - W ))m, aJ(O) =0 00.0.000-.00.(2)

High-cycle fatigue damage laws. For high-cycle fatigue
conditions the constitutive equations (1) can describe
the third stage of cyclic deformation by replacing the
amplitude of stress @ on the "effective amplitude"
G_(1 + q). The high—c?cle fatigue parameter q charac-
tePises the material softening and is described by the
following evolution equation
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q=L6rp .OCl..ll..O.'O..."........‘Ol‘..’.(3)

Material parameters determination. The experimental
Eefermina%ion of meterial paramefers dk, a., £, s, B,
n, A and m (or L and r) are based on a serEes of creep
(or fatigue) and lifetime curves. The parameters deter-
mination is reduced to the solution of a set of linear
equations. The use of regularisation methods, special
measure regime etc. provide the calculational and sta-
tistical stability of this approach.

FRACTURE CRITERION OF ELEMENTARY VOLUME

Energetic fracture criterion. The rupture of structu-
res is analysed using The thermodynamic of irrever-
sible process relations. The energetic fracture cri-
terion proposed in ref. (5) is formulated as

"the elementary volume #V of material is fractured and
elementary crack #S is initiated when the internal
energy density U of this volume has reached the cri-
tical value U,".

Creep conditions. Taking into account the internal
energy density dependence on stress, temperature and
internal state variables as proposed in ref, (5) this
criterion may be written as

U(G’ rr\’ w*) =U* oc....on.o"..c.0000..0"0(4‘)

The simpest approximation of condition (4) given in
ref, (5) is

6/(1 - w*) = 6* ........-.......-.....o...(5)

where @, is the value of damage parameter at frac-
ture moment and G , is the ultimate stress.

High-cycle fatigue conditions. In the textbook by Fedo-
rov Z§§ it was s%own That for high-cycle fatigue condi-
tions the change of heat flux per unit cycle a4Q is
proportional to the work of stresses 4 A. The approxi-

mation of this relationship may be written in the form

AQ = (1 - k(ga - 6_1)r) AA -oococacooccoco(6)
where G _., is the shakedown 1limit stress. The law of
energy coﬁservation AU = aA - aQ allows us to write
the energetic fracture criterion U = U, as

i\
k[ (6 = GG 48N = Uy ceeiiieenne (D)
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where AA =k, @ 0€ is the area of inelastic hystere-
sis loop, kf fs #ne shape factor of the loop.

Length of initiated crack. The energetic fracture cri-
JEerli on enable us to estimate the characteristic size d
of fractured volume §V and the length of initiated
crack, As shown in ref. (5) the energetic balance of

volume-surface transition lead to the following
d ~ 2r/U* occcoooaoooooocco(B)

where Y is the effective surface energy density. Thus,
the energetic fracture criterion U = U, of elementary
volume § V means that the volume §V of characteristic
size d is fractured and the initial crack ?S of cha-
racteristic length d is coinceived,

CREEP CRACK GROWTH

Creep crack owth equation. The growth of initiated
(or %ecEﬁoIoglcaIi crack in structures is analysed
also under energetic fracture criterion. Thus, during
the crack growth process internal energy density U in
volume §V near the crack tip has a critical value U,,
Using the approximation (5) equation for crack 1engzh
1(t) proposed by Astafjev (9) can be written as

6(1(t) +4d, t)/(1 - @ (L(t) + 4, t)) = Gy «.(9)

Hutchinson (10), Rice and Rosengren (11) stress field
asympthotics and evolution equation (2) lead (9) to
the following creep crack growth equation
z
c(x) 0‘, B c"'(O)
( T(x)ax = 1 = ¢’ (2) - T
Ze=X+1 (1+2)%*
where 8 = (1(t) - 1)/4, T= t/t., c(z) = C*(1(t))/Cx_
are dimentionless cPack length, %ime and anvariant
C*-integral, & = m/(n+1) < 1,n+4= (m+1)/(n+1) < 1,
ty = 1/A(m+1) Gy, C¥. = BI 6 ," 4.

Crack start conditions. Equation (10) gives us the
expression fox imentlonless time T, and dimentionless
rate ( 77'(0)) of crack start

TO = (1 - Cﬁ(o))/c&(o) ocoucco-looaoooaooouotc(11)

TO) = &T - B(c(0))®41e'(0) vuruurunnn..(12)

.‘0.0(10)

Relationship (11) shaws that C¥. is analogous to K1a
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of linear fracture mechanics, For c*(1 ) = C*  crack
starts immediately. When c*x(1 ) <« Cx* ?c(O);9r1) and
7. > O there exist conditions®for which 77(0) = O.
T8is means that the crack after time 7. begins to pro-
pagate dinamically (unstable crack groWth). If 7'(0)>0
then after time T . the stable crag# propagation with
initial crack groWth rate (T'(0))” " begins.

Stable crack growth conditions.For z > 1 equation (10)

Tas ihe Tollowing solution Z 41 .

sin Ml‘l-cﬁ(O) c”” (x)e’ (x)dx
PEAWIEE: -p T

When c(z) ¢< 1 this expression may be written in form

d
c*(1(t))
( ) (1(t) - 10)1""...(14)
sinfid\ BI,

cd(z)T'(z) = ees (13)

1() = A(m+1)

Relation (14) coinsides with the analogous of Kubo et
al (12) obtained in assumption w(1(t) + 4, t) = 1.

Critical crack length. The growth of the crack length
Teads to the growfﬁ of c(z) and there is a critical
crack length 1 _ when ’C"(zC ) = 0, It may be evaluated
from (10) as £&¥10ws =

Cx(1,,) = Ogo(1 = (=0 (1 = XONE e 1)

Contrary to the linear fracture mechanics condition

K- (1 r) =K the expression (15) shaws that 1, de-
pgndg on bo%g C*_ and applied load and also on Tnitial
crack, length 1 _. The qualitative behaviour of depen=
dece 1(C*) is fllustrated in figure 4,

Crack growth under variable loading. Under two-step
oading e creep crack grow equation (10) predicts-
(i) a sudden crack growth up on 4 and the increase of
crack rate just after the low-to-high stress change;
(ii) partial crack arrest on AT and decrease of crack
rate after the high-to-low stress changes (Figure 5);
(iii) a sudden crack growth up on A and partial crack
arrest on AT after short overloading (Figure 6). This
conclusion corresponds to the exvegimental data of
Teira et al (13) for 316 SS at 650°C (Figure 7). The
experimrntal data, from ref. (13) and theoretical rela=-
tionship between 1(t) and C* from equation (14) are
plotted in figure 8.
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CONCLUSIONS

The use of offered equations for the whole deformation
process permit to prognose the behaviour of individual
member with sufficient precision that is to solve the
question of its deformational and strength properties
under creep or high-cycle fatigue conditions.
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p A €L 1) hardering case
2) softening case
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Figure 1 Creep curve with Figure 2 Fatigue curves for

unloading hardering and softening case
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Figure 3 Curvature vs time Figure 4 Dependence 1l vs Cx*
dependence for bending according to equation (10)
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Figure 5 1(t) curves under Figure 6 1(t) curve under

two-step loading

short overloading
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Figure 7 1 vs 1 for 316 SS Figure 8 1 vs C* for 316SS

in two-step loading (13)

from ref.(13) and eq.(14)
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