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THE STRESS APPROACH TO THE CRITERIA FOR MIXED-MODE
FRACTURE

A.C. Chrysakis*

The possibility to determine the critical load
and the corresponding direction of propagation
under mixed-mode conditions by studying the
variation of appropriate stress components at
the vicinity of the crack tip forms the con-
tents of the stress approach to mixed-mode
fracture (MMF). It consists of the original
maxo, and the recently proposed maxo_,max|T &,
maxo, and maxCOR criteria. A unified preseng-
ation of them, with reference to their common
underlying principles, is given. The reasons
for inclusion of the constant term of stres-
ses in the relevant analysis and the con-
sequences of this inclusion are examined.

INTRODUCTION

The passing from mode-I to mixed-mode results in rotation
of the stress field at the crack tip and loss of its sym-
metry (see e.g. distribution of o_ in Fig.1).Consequently
the crack propagates in a non-self-similar manner under

a critical load o

<y different from the oly of mode I. De-

termination of direction 9, of propagation and of o r/0cr
are the objectives of the criteria of MMF. When deaflng
with the problem within LEFM it must be:

(i)

(ii)

3 22 3

Yr<r

o SO that all the stresses remain elastic and

o .= T2 £, (ke oky18) = —2— £, 0k, ,k,39) (B
)b vanr V2r/a J
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so thaf the stress components may be represented
by éheir singular terms only, in the form:
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and the strain energy components in the form:

2
dw _ o 2 2
@ = z/a ¥ Kk k2]
Consequently the analysis is developed in the ring
Rg (Fig.2b) (see e.g. Irwin(1), Chrysakis(2)). In (1),(2)
the stress intensity factors K1,K2 have been introduced
in the form:

Ki=ovﬁki, i=1,2 (3)

where a is a characteristic crack length and the dimension-
less factors k. are functions of the geometry and of the
distribution of loading. E.g. in the case of the inclined
crack in uniaxial tension (Fig. 2a) it is:

k1 = sinZB k2 = sinB cosB . (4)
Consider now the problem of determining 9 . All the
existing criteria postulate that fracture is Frelated to
the position(s) where a critical for the mechanism of
fracture quantity obtains its extreme value (s). The various
criteria differ in the choice of this quantity, which is
either a stress component (Erdogan and sih(3), Chrysakis
(2,4,5,6)) or an energy component (Sih(7) , Theocaris and
Andrianopoulos(8)) - hence one may talk about the stress
approach or the energy approach to MMF. Now since the
algebraic expressions of these quantities (egs. (1),(2))
are in the form of separable variables, their above
mentioned extrema lie on the corresponding sur faces
either at the top of hills or at the bottom of valeys,
in either case radially arranged along AB (Figs. 2b and 3).
And the basic assumption of LEFM, underlying all the cri-
teria, is that this radial direction AB may be extended
into the "unknown" plastic circle C (0,r.) up to the crack
tip - an assumption justified amongothes, by the fact
that these criteria were initially proposed for brittle
fracture, hence r,~0. The above explain the first of the
two hypotheses made by Erdogan and Sih(3) in their origi-
nal criterion: "(a) The crack extension starts at its tip
in radial direction" - which is common hypothesis to all
the other criteria, too.

Later Williams and Ewing(9), trying to explain a
certain discrepancy of the theoretical predictions of the
maxo. criterion for 9 _ from the data of their extensive
expefimental researchj proposed the inclusion of the con-
stant term in the expression of Ogr maximized with respect
to 9. Thus the expression of Ogr instead of (1), takes
the form:
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Oy = 9
vV2r/a

In this case the characteristic of separable variables,
encountered in (1), (2), has been lost, hence the value 9
of 9 maximizing Og being a root of the equation: P

fa(k1,k2;8) + oga(a) . (5)

1
——— fl(k,,k ;9) + gl(8) =0 , (6)
VZE/a 9172 9
depends not only on the stress intensity coefficients k_,
k2 but also on the value of (r/a) (Fig.2b). This type o}
analysis is necessitated if r>r and, for its validity,
it should remain r<r.,, hence it; corresponding region is
the ring R_(Fig.2b).“In this region and since, as already
explained,” 9,= 9, (r/a), the locus BC of 3p deviates from
the radial direction 0OAB, hence questions arise, concern-
ing the validity of the basic hypothesis of extension in
radial direction. Williams and Ewing report in (9) (as
corrected by Finnie and Saith(10) for the ommision of one
term in eq. (3) of ref.(9)) improved coincidence with
their experimental data by applying eq. (6) with V2r/a=0.1.
It should be mentioned here aparallel, more general
research by Eftis, Subramonian and Liebowitz (see e.g.(11)).

The stress approach was identified to the maxo. cri-
terion (3) until, recently, Chrysakis investigated the
contribution of other singular stress components to MMF
and proposed the maxo_, maxl|t_.| (2), maxo, (4) and
maxCOR (5,6) criteria® A unifiga presentatlon of these
stress criteria will be given in the following sections
against the background of their common ideas which have
been visualized in this Introduction.

THE maxog, maxo,, maxltral AND maxo1CRITERIA FOR ap

The following notation is introduced:

T _ 9 _ 9
s = 51n—2~ Cc = COST t = tan—z—
(7)
_ ... nd _ nd _ nd }
sn— sin—- C,= Cos—- tn— tanir, n 2;3:.s

Accordingly the singular terms of the polar components of
stresses are written:

g = el [k1c(1+sz) + kys(1-3s7) ] (8)

r V2r/a

oy = —2—(k,c’- 3kzscz) (9)
V2r/a
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Trs 2 [k1
V2r/a

Let OP be the radial direction of expected crack pro-
pagation and C(O,r) a small circle whose circumference
lies in the ring R_ (Fig.3). The separation of the material
along OP is connected with tensile forces acting in a di-
rection perpendicular to OP. The most obvious choice of
such forces are those corresponding to o_.. Hence the ma-
terial will split at that point B of the circumference C
(Fig.3), where o.becomes maximum (3). The direction 9 _ of
propagation is tRe root of the equation: p

S5 + kzc(1-3sz)] (10)

dc3 2 2 d%aa
~—Y - 0 or k,sc“+k,c(1-3s”) = 0 with <0 (11)
do 1 2 dBZ

From (10),(11) it is seen that in case of maxog it is Tﬁ=&

Now the other two components o _,T_., being also sin-
gular, possesshigh values of the s mergrder of magnitude
as o, along C, hence they may be expected to contribute

to cfack propagation as much as © does. To investigate

how this may be happening, Chrysaﬁis(Z) studied the va-

riation of o_, T along C. To make concrete the discus-
sion, the coﬁfigﬁration of the uniaxially loaded inclined
crack with B=30° is considered here. The variation of o_,
Ogr T with 8 is shown in Fig.4. The maxo, occurs for r
9 =—§%.2°.On the other hand o, presents %wo maxima at

9 1=-163.7° and 9,.,=41.69. The variation of o, with 9 is
aiso shown in Fig.%b in a polar diagram, while in Fig.3
the particular stresses or1=0y (8=-163.7) and O,2=0y (41.6)
are shown applied at the points E and E2 respectively,
symmetrical to the direction of propagation and exerting
an "opening action" on the material enclosed in C. Hence
the direction of propagation coincides with the bisector
of the angle E4OE;:

Sr = (8r1+8r2)/2 = (-163.7+441.6)/2 = —61.0—8pS (12)
This result is valid for all values of B (i.e. of the
ratio kq/k;) hence it can be postulated that:

"The crack propagates in the direction OP bisecting

the angle of directions OEq, OE;,, where ortakes its

maximum values."

A similar situation is encountered with max |t 8I:
there are two maxima at Fy,Fp with corresponding
9,5{=—117.6° and 98.55=9.3° and bisector at 9yrg=-54.19(Fig.3).
At Fq the shearing stresses are shown to be equivalent to
a tension in the direction F{F{ and at F; to a tension in
the direction FéFg. Hence again the symmetrical positioning
of the two maxima of |t g4l with respect: to the direction
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8p of propagation may lead to a similar postulate:
"The crack propagates in the direction OP bisecting the
angle of OF4,0F, at which It,g! obtains its maxima!

A third approach to this method of determination of Sp
as the bisector of an appropriate angle can be based on
the maximization of principal stresses (4). Let 0 denote
the largést of the two principal stresses. 04 is expressed
as a function of (r,9) in terms of either o ' Tr9:99 given
by egs. (8,9,10) or in terms of o_,o ' Txy gfven by similar
expressions. The directions 9y of m¥x01 are roots of:

o'+o' o_-o o'-o! o -0 -2 -1/2
x_y J(Zx""y\("x % ' X “y\, . 2 ~
2 +l( 2 }( 2 )+TXYTXY”( 2 ) ”xy} =0l §18)

where the prime denotes differentiation with respect to 9.
Eq. (13) has been solved in (4) and for B=30%gives 9, =-149,4°
82=—14.6°. At the corresponding points G +Gp of C the
principal stress o1 is at an angle ®;,i=1,2 to the x-axis,

given by: _
v L s+55)+k2(3c+c5)

ox—oy k17-c+c57—k2(3s+55)

2t
X

tan2wi= (14)

Thus substitution of 99=-149.4 in (14) gives 94=15.8 for
the direction G1G{ of 04 and 821-14.6 in (14) gives ©,=38.0
for the direction G,G3 of 04.° The bisector of G1Gi: G,G5

(Fig.5) is in the direction:

- - o

801 = (w1 180 +w2)/2 (15)

and for the above values of o /0, is 9 =-63.1° -which
is in good agreement with the &irection 1 9 _ determined

by the other criteria. Thus it may be postufated that:
"When the material enclosed in C is "pulled" by maxoy
at the points G4,G, along the directions G1G{, GyG5,
it is separated along the radial direction oP,
parallel to the bisector of G1Gi, GzGé (Fig.5)."

Numerical values of the variation of 9 (=8ror Sratar 301)
with B:tan-1(K1/K2) are given in (2,4) and its graph in
Fig.6

DETERMINATION OF LOAD AT FRACTURE ocr/cér

The previous discussion for determination of © has

established two approaches. P

(i) That of maxo, criterion, in which the o, component
Causes scparation of the material of thé corresponding

surface element (dr, rdd)at B (Fig.3), hence separation

along radius OB is due to the resultant of stresses along

OB. If B corresponds to the direction BP, then the cor-
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presponding tra=0, hence the above mentioned resultant per
unit thickness, due to Og only, is:

r
R8p= joce(r,ﬁp)dr = 2rca(r,8p) . (16)

Obviously this resultant is greater than the resultant RS
along any radius OE(9) other than the direction OB(3_)

of propagation. Now, since O and o are proportionalj the
load o may be increased unti? Oy reaches a critical value
oﬁ,cr’ at which the material at B , under the sole action

of Oy fails, hence O is a material constant, hence
’

cr 1 9,CY
it is the same to Og under mode I:
leoia

1
%9,cr ~ %9,cr

or, substituting from (9) into the left-hand side of (17)
with 8=8p, 0=0_, and into its right-hand side with 9=0,

(17)

-_— -_— -_— I .
k1—1, k2—0, G = Ok
o 9 9 9 =1
cr _ 3 _ . ( \ 2 ]
—;—I— = [k1cos (—22) 3k251n\—éE}cos (%)J (18)
cr

where o and cI stand for the critical loads under mixed
mode and*mode I Conditions respectively.

(ii) In the case of the maxo ., max|T_g! and maxo criteria
the bisector approach is followed. In this, it is

not the material enclosed in the elementary area (dx,rdd)

which is being pulled at certah point B by the correspond-

ing appropriate normal stresses up to failure; it is the

material enclosed in a small circle C which, being pulled

by boundary stresses on the arcs AEB, A'E'B' fails along

OB /Fig.7). These boundary stresses are O, T, g/ their

resultants R,R' along arcs AEB, A'E'B' respecglvely are

in equilibrium and the projections RO=R' of these result-

ants on the "opening direction” pDD'| OB are the ones

causing separation along OB. Thus, after determining the

9 of OB by either of maxo ., max|1r8| and maxo, the RO

can be determined by the projections of S Trs on DO

integrated along the arc AEB (4,5). But if one considers
the equilibrium of sector OAEB (and since the crack lips
OA,O0A' are unloaded) it must be (Fig.8):

Ro = Rap ¢ Rs = Rrap (43

and, since the direction of propagation OB is approxima-
tely, the sane with that of maxdg., Rap is also approxima-
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tely equal to that evaluated by (16) (and R_~0). Therefore
determination of load at fracture may be reduced to eq. (18)
for maxog. These ideas of equivalence in the determination
of (ocr/ oér) may be traced in ref.(6), in which,it has

been shown that another stress criterion, the maxCOR (for
Circumferential Opening Resultants) (5) is equivalent to
the maxog.

9 * * *

Recapitulating the above discussion:

Certain stress components (namely or,lr ,l,ci) are

distributed in such a way along the arcs AEﬁ, A'E'B',

that their maxima appear at points symmetrically located

with respect to the direction of propagation (or at E1and
8I at F, and F2 and o, at Gmand G2, Figs.3,5).

Although separation along OB is not due to the sole action
of these individual stresses but to the action of the
opening resultants R_,R', still this property of symmetry
makes maxo,,max|t .| and maxo4 appropriate as criteria for
the detefmlnation f 9 . On the other hand determination
of Ucr/oCr is algebraifally equivalent to that by maxog .

EZ’ Itr

THE INFLUENCE OF THE CONSTANT TERM ON 3P AND ocr/ Ozr

The idea behind this modification has been visualized in

the present Introduction. If we denote the singular stres-
. S S S § s

ses given by (8,9,10) by 0.+ Ogr s then inclusion of

the constant term gives for the uniaxially loaded inclined

crack (with 52=sin8, c2=c058 according to eq. (7)):
_ S 2 _ s, . 2 _.s _
o= or+oc0526 Chr  Og= 08+051n28 Syr T.9T, g Oc05285202 (20)

In (9) eq. (20-b) has been employed to improve the predi-
ctions of maxo, and in (12) eqgs. (20) to improve those of
maxo_, max|T 8?’ maxo,. The direction determined by these
improved criféria wili be denoted by 9¢. As alredy ex-
plained by eq. (6) in the Introduction,Pthe resulting angles
depend on the distance from the crack tip:SC:=8C(r/a).

For VIZr/a=0.1 the theoretical results reporPed P in both
(9) and (12) fit very well to the experimental data for
the brittle PMMA specimens of (9). Still for all the cri-
teria significant variation of 9¢ with r/a has been found.
On the other hand, the limits r E r, of R_, within which
the present analysis is valid, have’not béen determined
and they, as well as the appropriate value of parameter
r/a, should depend on the particular ‘material. Thus the
basic principle behind the original criteria, that SP

is the direction of the straight line OAB (Fig.2b), since
it results for any rE(rO,r1),is replaced here by the fol-
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lowing: in these improved criteria a¢ gives the direction

oD, D corresponding to a value of r ?a which is a material
constant. This idea has also been pointed out by Swedlow
(13,p.509) in a very interesting critical review of the
problems, the methods and the corresponding physical con-
cepts of MMF.

But the inclusion of the constant terp in the criteria,
in addition to making their predictions 9  dependend on the
material through r_/a, it also makes them dependend on the
particular configu?ation of the problem, while in the ori-
ginal (i.e. criteria using singular stresses only) any con-
figuration is reducible to an equivalent - in the sense of
having the same 8 - inclined crack configuration. This
dependance of 9 P on the configuration has been pointed out
by Ewing et al * (14) in a study of the edge crack propagation.
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(b)

Fig. 1: Distribution of Orjjl Fig. 2: The inclined crack

node-I and mixed-mode. and the rings at crack tip.

8

B | —— o
/¢ ), i
K
L X .8
Fig. 3: Sp by maxcdg, mMaxo Fig. 4: Variation of the
and maxlrral criteria. singular stresses.
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