FATLURE ANALYSIS - THEORY AND PRACTICE - ECF7

The different statistical approaches to brittle
failure are discussed. 4 Probabilistic fracture
mechanics mode] (the Muest model) which combines
fracture mechanics concepts with sound statistical
approach having ‘Physical foundation g then
Presented. Finally this Muest model is compared
with the widely used Weibull's statistical method.

INTRODUCTION
=L 10N

With the emergence of pew materials such ag Structural Cceramics,
new trends jp fracture mechanics focus upon  statistical
approaches.

From the Point of view of fracture mechanics the new engineer-
ing ceramics are an interesting material. Failure is an erratic
évent, as a result of the Presence of 3 multitude of fracture
inducing flays having random-1ike orientation and distribution.

Statistical theories of brittle failure are based upon the
weakest link concept which identifies the fracture Process to
that of a chain, the links of which would be formed by the volume
elements. Fracture of the bulk specimen is determined by the
local strength of jtg weakest volume element.

* Battelle—Europe, Geneva Research Centres, 7 route de Drize,
1227 Carouge, Switzerland.
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Several statistical theories have been developed. However, in
the case of ceramics where fracture is caused by inherent micro-
structural flaws, suitable approaches are those considering the
microstructural flaws as physical entities.

From this point of view the Weibull approach presents certain
shortcomings since no direct use is made of the hypothesis that
fractures are due to crack growth from pre-existing flaws. This
limits its applicability in particular when analyzing multiaxial
failure.

Probabilistic fracture mechanics combine linear fracture
mechanics to sound statistical approach. Recently a multiaxial
probabilistic model (the Multiaxial Elemental Strength Model,
referred to as Muest model) was derived by Lamon and Evans.
Fracture mechanics concepts are applied at the microscopic level
of flaws. Distribution of the critical flaws is then described by
the Elemental Strength Approach which provides failure probability
expressions. The Elemental Strength Approach is an alternative
to Weibull's theory having fundamental foundation.

The primary intent of this paper is to present probabilistic
fracture mechanics, and more particularly the Muest model. The
paper thus reviews first the effects of microstructural defects
upon failure characteristics. The paper then compares the
different statistical approaches to failure and the Muest model.

CERAMIC FRACTURE CHARACTERISTICS: STRENGTH VARIABILITY

Structural ceramics as well as the other brittle materials exhibit

two important characteristics:

- first, linear elastic behavior up to fracture and very limited
crack arrest capability. As a consequence the elastic limit
marks crack growth as well as brittle failure. The corres-
ponding stress measures the resistance to fracture;

- second, the presence of a very large number of microscopic
flaws (the critical size is generally smaller than 100 pm).
The criticality of these randomly distributed flaws is
dictated by parameters such as their nature (pore, void,
inclusion, crack, etc.) [1], size, location [2,3] and orienta-
tion relative to stresses [4]. As a result fracture is a
probabilistic event.

The presence of populations of microstructural flaws has also
several implications on failure strength. Strength is not an
intrinsic property. It depends upon several parameters such as
the specimen size, the stress-state, and the nature of the
preexisting flaws.

Several specimens made out of the same material, having the

same dimensions and subjected to identical loading conditions
fail at different stress levels (figure 1). Because of this
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Scatter inherent to brittle materials, measured strengths are
handled 1ike Statistical data.

The larger the specimen, the lower the fracture resistance,
simply because there is a 8reater chance that , more severe flaw
is present among the greater number of flays in the large
specimen.

This size effect is pPerfectly illustrated by figure 2 which
shows that the strengths Measured on tensile specimens are
significantly lower than those obtained with 3-point bending
specimens having smaller stressed volume.

Sets of specimens which experience different stress-states
exhibit different fracture characteristics, as shown by figure 1.
In this typical €xample, mixed-mode loading conditions were
enhanced by reducing the Span length of flexural beams. It can be
Seen also that fracture origins were determined by loading

state (long spans) and by a bimodal Population of surface and
internal flaws when mixed-mode loading conditions Prevailed
(shorter spans). The specimen weakening induced by the internal
flaw Populations ijg enhanced by large dimensions (figure 3).

PROBABILISTIC FRACTURE MECHANICS AND STATISTICAL -
PROBABILISTIC APPROACHES TO BRITTLE FAILURE

If the flaws within tﬁe Structure could be identified ip terms
of size, shape and location by non-destructive means, a deter-
ministic-type analysis should accurately predict the strength by

Screen and identify the Ccritical flaws. Approaches based upon
statistical theories should allow the above-mentioned effects to
be characterized, e.g. the correlation of strengths measured in
different loading conditions angd the description of strength
variability. i

Figure 4 represents the aspects of pProbabilistic ! fracture
mechanics. It provides the essential relationships between the

tie triangle. Asg with the deterministic triangle, we can go
around the triangle in any way we like. For example, we can fix
the applied stress and derive failure Probability for a specified
material. Or, for a given component, we cap derive the Permitted
applied stress from flaw Population characteristics,
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For isotropic materials, the statistical theories may be
essentially grouped into 3 categories: Weibull, the flaw size
theories and the elemental strength approach.

The Weibull Approach

In recent years, the failure strength of ceramics has been routi-
nely analyzed in uniaxial conditions using Weibull statistics. An
empirical formula of the form given below is used to relate the
probability of failure Pf with stress O:

(o 011 m
P, =1 - exp [-/ 5 av (1)
\ o

m is an index of the degree of scatter in measured strength
values, 0_ a normalized factor and 0 the stress at which there
is a zero probability of failure (0u is usually taken equal to 0).

Weibull's formulation for uniaxial stress is straightforward.
But his formulation for multiaxial stress states is not readily
accepted, and several variations have been suggested.

In the original Weibull treatment of multiaxial failure (also
referred to as the normal tensile stress averaging method)
failure probability is given by:

- - _ m
Pf =1 - exp [ IV k IA o, dA av ] (2)
where dA is a%lelemental area on a unit solid sphere and k = (2m
+ 1)/2n (l/oo) .

In Eq. (2), integration is performed over half the surface
area of the unit sphere where the normal stress O is tensile,
neglecting regions where the normal stress is compressive. Eq.
(2) is a shear-intensitive description of multiaxial fracture.

Depending on the material considered, predictions using the
Weibull formulation may be either conservative or optimistic.
Thus, a number of investigators have obtained contradictory
results in multiaxial failure prediction based solely on uniaxial
tests. Alumina showed both weakening [5] and the opposite effect
[6,7] in biaxial tension relative to uniaxial tension. Other
materials similarly exhibited either a weakening (titania [8],
silicon carbide [9], glass [10]) or the opposite (glass ceramic
[11], porous zirconia [12]).

Barnett et al. [13] and Freudenthal et al. [14] suggested an
alternative simple approximation for handling multiaxial fracture
statistics (referred to here as the Barnett-Freudenthal {(BF)
approximation). In this approach, the principal stresses are
assumed to act independently in each principal direction. As a
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consequence, the failure probability is calculated from the
product of the individual survival probabilities, in the direc-
tion of the tensile components.

This assumption leads to the following equation for the probabi-
lity of failure from volume located flaws:

g My

(o)
L)+ GH 1) s
owv

[}
1
=l-exp[-f[ (—) + (
v Sowv %owy

2]
I

The BF approximation has been criticized by several authors.
As it ignores interaction of Principal stresses, it should
predict lower failure probabilities than the Weibull model [15].

Flaws Size Theories

The flaw size theories are based upon the statistics of flaw size
and location. The fracture Probability is derived from the flaw
size distribution f(a) by applying the fracture mechanics

P (0) = ff% £(a) da dp (4)

The major problem in the use of these theories lies in the
determination of the expression f(a). These theories have been
applied to the tensile biaxial loading of a brittle material
[16,17]. This work was based upon a general arbitrary form for
f(a). Extensive data on flaw size distribution in ceramics are
not available.

Flaw size theories are still in their infancy and require
further development. Their future depends on the development of
efficient non-destructive techniques.

Elemental Strength Approach

This approach also considers flaws as physical entities. It is
based upon the premise that the pPre-existing flaws in the
material can be characterized by their flaw extension stress or
strength S. Failure probability is calculated from the following
equation:

_ S
P. =1 exp[ fv av f ° g(s) ds] (5)
8(8) dS represents the number of flaws with a strength between S
and S + dS. g(S) characterizes the distribution of flaws in the

material. g(S) can be derived from strength data measured on
specimens having well-defined geometry and stress state. The
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elemental strength approach thus allows the shortcomings of the
Weibull solution and the current limitations of the flaw size
theories to be overcome.

The Multiaxial Elemental Strength Model

The Muest model combines fracture mechanics concepts with the
Elemental Strength model [2,3]. The fracture criterion incorpo-
rates recent concepts of non-coplanar crack extemsion [2]. It is
considered that fracture may occur in a direction depending upon
the respective magnitudes of the normal and the shearing
components operating on the flaws. This criterion is based upon
the maximum in the strain energy release rate G , in the
direction of crack propagation: ax

1/2
(A0 (A4 x) ok 22 b
Cpax = 4E [ Ky + 6KKpy + Kppl (6)
where x = 3-4 v under plane strain conditions, x = (3 - v)/(1 +

v) under plane stress conditions.

Failure is dictated by the criticality for Gmax'

Insertion of this fracture criterion and stress distribution
in a mathematically convenient form of g(S) then permits the
failure probability to be derived as follows in terms of the
imposed loading, the specimen size and the flaw strength
parameters (mV and UOMV) [2,3]:

I'l1V

(o] g g

1 2 3
P, =1-exp [ - J (—) 1,(m,, — , =) dv ] @))

A \Y GOMV vy 01 01
where my, O /0 g /0 ) accounts for shear sensitivity of

volume Eiaws and %helr orlentatlon relative to principal stresses.
Expressions for I, (m,, 0, /0., 0,/0.) are given in references 2,

3, 18, 19. o, and 0, may be compréssive on the condition than O,
and the equlvalent™ stress GE derived from Eq. (6) are tensile.

A similar equation applies to surface failure origins.

EXPERIMENTAL COMPARISON OF THE WEIBULL AND THE MUEST MODELS

The current capabilities of the Weibull and Muest models for
correlating strengths obtained in various conditions were
compared on the example of figure 1 involving mixed mode loading
conditions and the presence of a bimodal flaw population. The
flaw size theories were not considered due to their important
limitations.
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Failure strengths were Predicted for the set of specimens
having ap intermediate span which experienced fajiluyre from
bimodal Population of surface and volume flays. The flaw
strength Parameters pertinent to surface flaws had been deter-
mined on long span specimens. Thoge Parameters pertinent to
volume flaws had been determined on the short SpPan specimens. The
details of the theoretical ang Ccomputerized analyses are given in
references 3 and 19 respectively.

It can be Seen on figure 5 that the Muest method calculated
failure strengths which are in excellent agreement with experi-
mental results. Jp contrast, the Weibull method significantly
underestimated the failure Strengths. It jig worth noting that for
the 3 loading cases under consideration, the normal tensile
stress averaging method and the BF approximation reduced to the
uniaxial Weibull's €quation (1), thus ignoring the mixed-mode
loading generated by the intermediate and short spans.

structural flaws, statistical probabilistic approaches gare
required for characterizing the probabilistic nature of failure

A primary consequence of the Presence of the flaws is that
fracture strength is not ap intrinsic Ccriterion. It depends upon
the specimen size, the stress-state, and the characteristics of
flaw Populations.

Probabilistic fracture mechanics permits the correlation of
strengths measured ip different conditions. Probabilistic
fracture mechanics combines fracture mechanics concepts applied
at the microscopic scale of flaws with a sound statistical
probabilistic theory. 1In Particular, the Muest model is gap
improvement over the Weibull's statistical theory.
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SYMBOLS

= crack size

= thickness of bending bars

= elastic modulus

= maximum straip eénergy release rate

= mode I stressg intensity factor

= mode II stress intensity factor

= span length of bending bars

= shape parameter

= shape parameter Pertinent to volume flaws

= probability of failure

= probability of failure from volume flaws

= fracture strength (MPa)

= volume (m3)

= crack angle

= tensile stress

= equivalent stress.

= normal stress

= scale factor

= Muest scale factor pertinent to volume flaws

= Weibull scale factor pertinent to volume flaws
03 = principal stresses (G1 > o, > 03)

= Poisson's ratio.
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