FRACTURE TOUGHNESS OF MARBLE DETERMINED ON "EASY-TO-PREPARE" SPECIMENS

L. Borbás\(^{+}\) E. Czoboly\(^{++}\) M. Gálos\(^{+++}\)

Prismatic test pieces - generally used for testing metals - are not appropriate for rocks because of difficulties in machining and because of premature fracture as a consequence of local stresses.

To evaluate a more economic specimen-form we performed experiments on test pieces recommended by Erismann and Prodan (1). These can be easily prepared from the circular rods, the usual form of samples taken from the rocks. However, because of the particular features of rocks some alterations had to be made compared to the original recommendations. So, e.g. instead of the load transmitting rolls wedges were applied to avoid local stress concentration (Fig. 1.). These changes were thought to be insignificant, but the first experiments provided unreasonable results.

Photoelastic stress measurements demonstrated that the friction between the test piece and the wedges cannot be neglected and the stress intensity factor should be calculated with the formula:

\[
K_I = \left(\sigma_B + \sigma_T \right) \sqrt{a^n} \gamma
\]

(1)

\(\sigma_B\), the bending stress and \(\sigma_T\), the tensile stress at the tip of the crack are:

\[
\sigma_B = \frac{6F}{2B} \left[d + (a' + \frac{w' - a'}{2}) \tan \psi \right] \frac{1}{(w' - a')^2}
\]

\[
\sigma_T = \frac{F}{2B} \tan \psi \frac{1}{(w' - a')^2}
\]

(2)

with the notations seen in Fig.1., \(\tan \psi=0.65\pm 0.03\) in the range of the thickness and diameter tested. These experiments are described in details by Czoboly et al. (2) and Thamm et al. (3).

Further on the influence of the angle \(\alpha\) has been investigated. The experiments were performed on marble, which is a rock of microholocrystalline structure, having crystals of homogen grain size, without micro cracks. Test pieces of \(\alpha=0, 90, 120\) and \(180\) deg. were tested (Fig.2.). Before the test the specimens were coated with photoelastic layer to determine the stress distribution. During the tests the fringe distribution figure was observed and recorded on a video recorder. At the moments of wedge openings the critical stress intensity factors (SIF \(\text{crit}\)) could be determined. The method of evaluation was similar to that of described in Refs. (2,3.). The results are given in Fig.3.

\(^+\) TU Budapest, Dept of Machine Parts
\(^++\) Hung. Ac. Sc., TU Budapest
\(^+++\)TU Budapest, Dept of Mineralogy and Geology

561
It was interesting to observe that in the case of specimens with $\alpha = 0$ and 180 deg. the highest stress concentration was at the point of contact of the specimens and the flat tools, therefore the cracks started from that point. It was concluded that these type of specimens cannot be used, because the component of tensile stress at the crack tip is too small (or zero) to initiate a fracture.

Calculations of critical SIF-s using the formula (1) are in excellent agreement with those determined by photoelastic methods. The results are compared below.

$$K_i (N.mm^{-3/2}) = 90 \text{ deg. by Formula (1)} \quad 45,2$$
by photoelastic method $50,4$

$$= 120 \text{ deg. by Formula (1)} \quad 64,7$$
by photoelastic method $57,2$

The effect of in the tested range is insignificant.

SYMBOLS USED

a' = crack length (mm)

d = distance of wedges (mm)

w' = width of specimen (mm)

F = load (N)

Y = shape factor (-)

α = the angle of cut-off (deg.)

ψ = the angle between load and vertical line (deg.)

K_i = stress intensity factor ($N.mm^{-3/2}$)

K_{ic} = fracture toughness ($N.mm^{-3/2}$)

σ_B = bending stress at the crack tip ($N.mm^{-2}$)

σ_T = tensile stress at the crack tip ($N.mm^{-2}$)

REFERENCES

Fig. 1. Shape and dimensions of the specimens

Fig. 2. Specimens with different \(\alpha \) cut-off angles

Fig. 3. The evaluated critical stress intensity factors (SIF)