FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

THE USE OF HENCKY'S EQUATIONS FOR ESTIMATING
MULTIAXIAL ELASTIC-PLASTIC NOTCH STRESSES AND STRAINS

M. Hoffmann, T. Seeger-.

A procedure for estimating notch stresses and
strains of structures under proportional loading
is presented. The procedure is based on a
simplified handling of kinematic hardening,
known local strain approximation formulas,
Hencky's flow rule, and boundary conditions of
the notch element.

Application is illustrated by the example of a
notched round bar under combined loading.

In the last two decades a concept for crack initiation 1life
predictions has gained importance which is based on the assessment
of the stress strain path at the mostly stressed volume element of
the structure under consideration (see e.g. Dowling et al (1),
Landgraf et al (2), Nowack et al (3) and Heuler (4)). This concept
- called local strain approach - distinguishes itself by requiring
only a small amount of experimental data, the cyclic stress-strain
curve and the strain versus 1life curve both obtained from smooth
specimen tests.

* FG Werkstoffmechanik, Technische Hochschule Darmstadt
PetersenstraBe 13, D-6100 Darmstadt, F.R.G.
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The fatigue life analysis is divided in two principal steps. First,
the local notch stress and strain histories must be predicted, and,
second, the life resulting from this stress-strain versus time
history must be estimated. The main concern of this paper is the
prediction of the 1local stress-strain path for multiaxially
stressed notches under proportional loading.

Sophisticated elastic-plastic analysis techniques such as
Finite Elements could in theory be employed for this task. However,
this would be extremely expensive and time consuming for load
histories containing more than a few load reversals.

In chapter 2 it is shown that - like in cases of uniaxial
notch stresses - cyclic loading can be reduced to a sequence of
monotonic loadings by taking into account the cyclic material
behaviour described by the terms Masing- and memory behaviour.
Thus, stress-strain analyses of notched components can be
concentrated on monotonic loading.

For this problem an approximate procedure is proposed in
chapter 3 delivering the complete state of elastic-plastic notch
stresses and strains. The solution occurs in two steps. First, a
relationship between applied load and equivalent notch stresses and
strains is established, and, second, the principal notch stresses
and strains are correlated to the equivalent quantities by applying
theory of plasticity.

In chapter U4 special attention is given to the calculation of
the principal quantities where Hencky's finite law is compared to
the incremental flow rule of Prandtl-Reuss.

The method presented has been checked by experimental and
numerical investigations (5,6) (structures investigated see
Fig. 1). Application is illustrated in chapter 5 by the example of
a shallow sharp notch under combined tensile and torsional loading.

A general discussion of multiaxial stressed notches including
fatigue life predictions closes the paper.
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CYC BEH R OF STRUCTUR NDER PROPOR

Experimental investigations reveal (e.g. Wetzel (7), Dowling (8))
that the cyclic deformation behaviour of engineering materials can
be described by a model consisting of the following elements:

1. Masing-behaviour'l)
The shape of hysteresis loop curves corresponds to the
doubled cyclic stress-strain curve, Fig. 2.

2. Memory behaviour
For an irregular load history the stress-strain response
exhibits memory effects which can be characterized by (see
e.g. Clormann and Seeger (10)):

M1: Memory 1
After forming a closed hysteresis loop the starting
point of which has been on the cyclic stress-strain
curve (Fig. 3, 1-2-1) the stress-strain path follows
the cyclic stress-strain curve.

M2: Memory 2
After forming a closed hysteresis loop the starting
point of which has been on a superior hysteresis loop
(4-5-4) the stress-strain path follows the original
hysteresis loop (3-4-6).

M3: Memory 3
A hysteresis loop started on the cyclic stress-strain
curve ends in the opposite quadrant (between 4-6) when
the stress or strain amount of its starting point is
reached. Subsequent loading follows the cyeclic
stress-strain curve.

Assuming that a notched structure is only uniaxially stressed,
or at least that multiaxial effects can be neglected, the similar
cyclic behaviour of each material element of the structure leads to
a structural behaviour that again can be described by Masing- and
memory-behaviour. Hence, the complete notch strain history can be
predicted by the load - notch strain relationship for monotonic
loading. Let this relationship between applied load S and notch
strain ¢ be expressed as

1) According to Masing (9) who described this phenomenon first.
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e = £(S). (1)
Then, the hysteresis loops are described by
Efr f(S-S") for increasing load (2a)
2
Ep=¢€ S-Sp
= f( ) for decreasing load (2b)
2 2

To investigate whether this is valid for multiaxial situations,
too, the shallow sharp notch, Fig. 1, under combined tensile and
torsional loading was analyzed by Finite Element method. A bilinear
stress-strain curve
c/E G(GY
e = (3)
oy/E + (o-aY)/ET o>ay
with ET=0.05'E and a ratio tn/6n=2.5 of the net section stresses
was assumed.

The maximum principal strain history, Fig. 4, was determined
in two different ways. First, the complete load sequence was
calculated by FE-method using the kinematic hardening model (see
symbols). Second, only a FE-analysis for monotonic loading was
carried out resulting in a relationship like Eq. (1). Then, the
load - strain path was constructed under consideration of Masing-
and memory-behaviour from load reversal to load reversal point
according to Table 1 leading to nearly the same results as with the
cyclic FE-solution.

Fig. 5 reveals that the element at the notch root experiences
relatively small changes of the stress ratio 02/01 explaining that
Masing- and memory-behaviour are fulfilled so well. It seems that
the cyclic behaviour of multiaxially stressed notches under
proportional loading is the same as in uniaxial situations, i.e.
cyclic loading can be reduced to a sequence of monotonic loadings.

In the following a method for estimating multiaxial
elastic-plastic notch stresses and strains is presented where the
considerations can be concentrated on monotonic loading according
to the above findings.
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3. AN APPROXIMA'i‘E PROCEDURE FOR ESTIMATING
TIA NOTCH STR S _AND STRAIN

The structure of the approximate procedure for estimating notch
stresses and strains at a traction free surface (for an example of
triaxially stressed notches see reference (11)) is depicted in
Fig. 6.

The following input is required:

o Elastic material constants and uniaxial stress-strain
curve o=g(e).

o Flastic stress state at the notch, e.g. described by the
two principal stresses Se1 and Seo and the principal
stress direction ag (subscript e denotes elastic
quantities).

o Plastic 1limit load level Sp for elastic perfectly-plastic
material.

The approximate solution occurs in two steps.

First, a relationship between applied load and equivalent
notch stresses and strains is establishedz . According to a
proposal of Neuber (12,13) the known approximation formulas derived
for uniaxially stressed notches (Dietmann (14), Neuber (15),
Bardrath and Ohman (16), Saal (17), Seeger and Beste (18), Glinka
(19), Kiihnapfel (20)) are extended to multiaxial stress states by
replacing the uniaxial notch stresses o and strains e involved as
well as the stress concentration factor Kt by the corresponding
equivalent quantities o £q and Ktq' For the definition of the
equivalent quantities von Mises flow criterion is chosen.

In the second step the equivalent quantities obtained from the
first step are correlated to the principal stresses and strains at
the notch root. This correlation is established by a flow rule -
either the incremental Prandtl-Reuss equations or Hencky's finite
law - describing the plastic deformations of a multiaxially
stressed volume element.

%) For a more detailed description of the load - equivalent strain
relationship see reference (21) and (22).
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Comparing the number of equations with the number of unknowns
two boundary conditions of the notch element have to be known for
solving the set of equations. Numerical and experimental
investigations of notched round bars reveal (5,23) that the
assumptions

o fixed principal stress direction a,

o and constant ratio 52/21 of the surface strainsa)
describe the actual behaviour at the notch root with sufficient
accuracy.

4, FINITE AND INCREMENTAL FORMULATION OF THE FLOW RULE

Starting point for the formulation of the flow rule represents the
rule of normality postulating that the plastic strain increment
deip (because of the boundary condition, fixed principal stress
directions, principal quantities, i=1,2,3, can be considered) is
perpendicular to the yield surface (e.g. Hill (24)). Assuming von
Mises yield criterion the rule of normality yields the
Prandtl-Reuss equations relating the plastic strain increments daip
to the deviatoric stresses o;'.

|

3d
dsip = = 1. of » 1=1,2,3 )
2 Uq
Written in total strains and taking into account that aB:O
(traction free surface) leads to an incremental stress-strain
relationship:

1 3 deqP

deq = =(dgq = vdop) + — o] * d (5)
E 2 Gq
1 3 degP

dep = —(dop = v°doq) + — cé 9 s (6)
E 2 O’q

) Note that strain eo and €3 are not ordered according to size. €1
and €2 denote surface strains and €3 strain normal to notch
surface.
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A V(d das 3 4 dsqp 1)
€q = =—-(doq + o 4+ — 0 ° 7
3 = "p\ee3 g3

with the deviatoric stresses

2 1

o1’ = 301 - 392 (8)
op' = %02 - %61 (9)
o3' = -3 (o1 + o2) (10)

Including von Mises yield criterion (in an incremental formulation)
oq"dog = 3" (04" doy + op'"doy) (11)

there are four equations (Eq (5) to (7) and (11)) for the five
unknown quantities d£1’ d52’ ds3, dc1 and daz. Incorporating the
boundary condition

52/31 = ¢ = const. (12)

the set of equations can be solved. Note that the boundary
condition, fixed principal stress direction, has already been
employed in the formulation of the flow rule.

The steps required for calculating the principal stresses and
strains for a given equivalent strain are listed in the appendix.
Due to the incremental formulation of the Prandtl-Reuss equations a
relatively complex solution strategy is necessary. For an
approximate procedure easy to handle a formulation in total strains
would be desirable.

A close integration of Eq (4) is only possible if the ratio
between the deviatoric stresses remains constant during 1oading4).
For this special case, the flow rule of Prandtl-Reuss reduces to
Hencky's equations (also denoted as deformation theory) relating
the plastic strains to the deviatoric stresses

*) The integration condition, proportional principal stresses,
given by Nadaj (25) represents an unnecessary restriction for
triaxial stress states.
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3 eqP
giP == -3 - of, i=1,23 (13)
2 Uq
Notating this equation in total strains a generalized formulation
of Hooke's law is obtained (0'3=O is incorporated in the following
equations).

ey = ;i; Can=y o) 4 (14
ey = ;;% Cagmy® “wa } 5 (15)
—r %% (63+03) (16)
vz $-3-v) TG':; , (17)

Though the deviatoric stresses do not behave proportional for the
problems considered, Hencky's equations are employed as approximate
solution for correlating principal stresses and strains to
equivalent quantities. Incorporating the von Mises yield criterion
and the boundary condition, 32/g1=eonst. , yields

o, e,/ + V'
- o, T+vieg, /e, (18

€3 5 1+a (19)
o VT
Gy = 2 O, ’ (20)
Vi-a+a q
-’
€q = _1=-v'a . (21)

Vi-asa® “Q
For comparison of Hencky's equations with the incremental flow rule
of Prandtl-Reuss a material element under constant 52/51—str‘aining
is considered being typical for the constraint prevailing at
notches. The strain ratio ¢=32/51 is chosen in such a way that a
maximum variation of the deviatoric stress ratio 52'/61' occurs.,
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For estimating this value ¢* Hencky's equations are used.

With Egs. (7), (8) and (18) the 62'/61'-variation from elastic
loading (v'=v=0.3) to large plastic strains (v'=0.5) results to

' ' 1=2ev)« (1-g2
%2 (v1=0.5) = 22 (vi=y) = (1-2+v)* (1-g2) -
0'1' o1v 5v — g=(1-2°%)

and becomes a maximum for
8" = [2 - v=V3- (1-v)1/(1-2v) = 0.12 (23)

For this strain ratio ¢* the 62'/51'—variation amounts to 0.24.

Principal stresses and strains calculated for a given
equivalent strain by Hencky's and Prandtl-Reuss' equations,
respectively, are depicted in Fig. 7 (elastic perfectly-plastic
material). The variable Poisson's ratio v', defined by Eq (17), is
taken as loading measurement. v'=v=0.3 represents elastic behaviour
and v'=0.5 large plastic deformations. Though there is a relatively
large variation of the deviatoric stress ratio 62'/01' deformation
theory delivers nearly the same results as the exact solution.

Further investigations reveal (23) that even for small
rotations of the principal stress directions Hencky's equations can
successfully be applied. It seems that the capability of the
deformation theory is linked with

o a steady increase of the plastic defoﬁmations,

o and monotonic behaviour of the stresses and strains.

Summarizing can be stated that for the boundary conditions
investigated it is sufficient to use Hencky's equations instead of
the more complex equations of Prandtl-Reuss.

AM AN R BAR UNDER C

Application of the proposed procedure is illustrated by the example
of the shallow sharp notch under combined tensile and torsional
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loading already discussed in chapter 2, The prediction of the notch
stresses and strains follows a solution scheme given in (23) for
routine application.

1. Definition of the material stress-strain curve o=g(e) and
selection of von Mises yield criterion:
The material stress-strain law be a bilinear curve according
to Eq (3).

2. Description of the elastic stress state at the notch:
Poisson's ratio amounts to v=0.30. Elastic analysis for
tensile loading results to
Kta = 0gy/0p = 3.89, Ee = Uee/"ez = 0.27
and for torsional loading
Kir = Tezg/Tn = 219
where on and Th represent net section stresses for tensile
and torsional loading, respectively.

The elastic principal stresses and stress direction are
calculated by

Kietn\2| Kg.-o
o =< 143 + J(1-a )2+ll( Lo . o = 4. UYq (24)
el e e K¢ oy 2 n

Ki T, o
Gep 1+ 3 - Ju - 72)2 4+ w(pEE 12

K, *o
ag = — = Kt“ B = -0.39 (25)
bt =
Ge1 1+ 3, + J(1 - ae)2 + M(—-Ktz 62)2
2 * Ky -7
tan 2q, = % tr 'm _ 37,8%° (radian: 0.66) (26)
(1-3¢) Ky 5top

3. Estimation of the plastic 1limit load level Sp for elastic
perfectly-plastic material based on elementary equilibrium
considerations:
For combined tensile and torsional loading of a round bar
elementary equilibrium considerations, assuming constant
distribution of normal and shear stresses, lead to (23)
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S, U4 3 + (op/Ttp)?
_p__/ + (op/tp oS

oy 3V 3+ 16/9-(on/tpy)2

Substituting t,/c, in Eq (28) results in Sp/uY = 1.31.

4, Definition of nominal stress and calculation of equivalent
stress concentration factor Ktq:
The equivalent stress at the notch obtained from common
structural analysis is chosen as nominal stress S

S =6, + 3¢, (28)

The equivalent stress concentration factor, defined by the
ratio of the elastic equivalent notch stress Seq to the
nominal stress S, 1is calculated with von Mises yield
criterion,

q = %e1/S’ V1-a,+2a2 =2.27 (29)

5. Calculation of equivalent notch stress and strain by Neuber's
rule:

K¢

With the extension to multiaxial stress states Neuber's rule

reads
®
E‘oq'eq = (Ktq's)2 . EE:— (30)
wieh 8% = -2 . & =27 1EY (31
Sp/cY

where the term E'e'/s' takes nonlinear net section behaviour
into account (26). For a given load level S the right-hand
side of Eq (30) is known (with Eq (31)) and the elastic
plastic notch stresses o, and strains g can be calculated
under consideration of the material's stress-strain curve,
Eq (3). Note, that the term E'e"/S® equals 1 for
5¢<s*20.760y.

6. Definition of notch element's boundary conditions:
I : fixed principal stress direction

= 37.8° = const. (32)

ﬂ.=0.e
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II: constant surface strain ratio

€ € ag= V
f2_ Ze2 1e_._ = const. (33)
€1 el ~Vrdg

7. Calculation of the principal stresses and strains according to
Hencky's equations, Eq. (17) to (22).

The results of the approximate solution are compared in Fig. 8 to
FE-calculations. The left-hand diagram shows a plot of the nominal
stress S versus the maximum strain £q- Additionally in this diagram
the corresponding stress o4 is plotted versus €q. Logarithmic
scales are used because linear scales overemphasize high load
levels, The range of application in general is limited by the
plastic limit load Sp.

The complete information about the stress and strain state is
given by the right-hand diagram showing the strain and stress
ratios 32/31, 53/31, 0’2/0'1 and the angle of the principal stress

direction o (radians) in relation to the nominal stress.

Accuracy studies reveal that the differences between
FE-analysis and the approximate solution are mainly caused by the
inaccuracy of Neuber's rule. Note that the assumptions, fixed
principal stress direction and constant surface strain ratio 82/81
describe the actual behaviour at the notch with sufficient
accuracy.

6. GENERAL DISCUSSION

mplifi handli f kinematic hardeni

Investigations on notched round bars under proportional
loading have shown that the complex relations of kinematic
hardening can be reduced to a model which consists of Masing- and
memory-behaviour, and Hencky's finite formulation of the flow rule.
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This is founded on the fact that the structures investigated
experience only relatively small stress redistributions and small
changes of the deviatoric stress ratios.

To clarify the cyclic behaviour of more complex structures it
is sufficient to run a single FE-analysis for monotonic loading.
Determine the deviatoric stresses for elastic loading and for the
maximum load. If the deviatoric stress ratios do not change
considerably and the plastic deformations increase steadily it is
expected that Masing- and memory-behaviour is valid as well as
Hencky's flow rule can be applied.

The above considerations refer to the assumption of stabilized
material stress-strain behaviour which is sufficient for most
fatigue life predictions. Cyclic softening or hardening can be
included, in principle, by adopting a variable stress-strain curve
in the approximate procedure where the variation can depend e.g. on
maximum strain reached and numbers of load cycles applied. However,
the problem then arises how to assess the stress-strain curve with
unclosed hysteresis loops.

It has to be pointed out that for nonproportional loading the
simplified handling of kinematic hardening does not hold anymore,
see chapter 6.5.

oad - uivale strain relationshi

Extensive studies concerning the accuracy of the method
presented show (23) that the major deviations are based on the
chosen approximation formula, here Neuber's rule.

As Neuber's rule describes a nontangential transition from the
elastic into the elastic-plastic regime it tends to overestimate
notch strains (19,27). This is especially true for low hardening
materials. Therefore, a formula proposed by Seeger (18) (with
tangential transition) should be employed for low hardening
materials, and if highly accurate notch strains are wanted near
yield iritiation.
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> *
] ] 2 1 I ] E-e
gq = .& . ﬂ e« — + 1n + 1 - _e_’g . —x
E I u? cos u ] S
q q (34)
n c /og = 1
vith u=—»—23 3 Ry= Keq*Spley » de,q = Ktq * S

2 Kp-1

6.3 Boundary conditions of the notch element

If a traction free surface is considered two Dboundary
conditions of the notch element must be known for the evaluation of
the notch principal stresses and strains.

Concerning the first condition, it is assumed that possible
changes of the principal stress directions can be neglected. For a
lot of structures and loading situations principal axes are fixed
because of symmetry conditions. Experimental and numerical
investigations of combined loading show that even in these cases
there are only small changes in the principal stress directions.

The second condition is obtained by taking into account the
geometrical constraint at notches. For example, circumferential
strains of the notch are controlled by the circumferential strains
at the gross area. Based on the investigations of the notched round
bars, Fig. 1, it is assumed that the ratio 52/91 of the surface
strains remains constant during loading. The limiting case, pure
torsional loading (32/51=-1), is satisfied exactly.

The constraint assumption should not be applied to structures
with extremly shallow and mild notches which resemble smooth
specimens. For these cases an assumption concerning a stress ratio
should be applied (23).

6.4 Fatigue 1life predictions

The previous considerations have been focused mainly on the
estimation of the local stress-strain histories. Fatigue life

174



FRACTURE CONTROL OF ENGINEERING STRUCTURES — ECF 6

predictions furthermore require the definition of a multiaxial
fatigue parameter relating multiaxial damage behaviour to the
uniaxial behaviour observed on smooth specimen, and employing a
damage accumulation theory for variable amplitude loading.

As, at the moment, no consensus exists neither on the most
appropriate multiaxial fatigue parameter nor on a damage
accumulation theory a simplified analysis of multiaxially stressed
notches is proposed in (28) with

o maximum shear strain as multiaxial fatigue parameter
(tending to conservative estimates as maximum shear strain
is the most severe one of the parameters known from
literature),

o and employment of linear damage accumulation with damage
sums usually less than one for variable amplitude loading
(for definition of the allowable damage sum the experience
with the Relative Miner rule gathered in crack initiation
life predictions of smooth specimens under variable
amplitude loading should be incorporated).

6.5 Nonproportional loading

The method presented is restricted to proportional loading.

For external loads acting at the same frequency but with a
constant phase difference the following procedure may lead to
reasonable estimates of the stress and strain amplitudes:

1. Calculate the notch stresses and strains under the
assumption of proportional loading.

2. Take the influence of the phase difference into account by
defining correction functions depending on phase
difference, load ratio and load amplitudes.

For arbitrarily nonproportional loading, e.g. external loads
acting with different frequencies, further developments are
necessary. In this case Masing- and memory-behaviour cannot be
assumed anymore. Fxtension of the approximate solution may be
possible by replacing
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o approximate formula by a differential formulation of
Neuber's rule or Glinka's strain energy density approach
(19),

o Hencky's flow rule by the kinematic hardening model of
Mroz (29),

o0 and constant values of the boundary conditions by, e.g.:
T a = ae(t) IT; 82/81 = Sez(t)/8e1(t)
where (t) denotes time dependency.

7. CONCLUSIONS

1. Cyclic, proportional loading of multiaxially stressed components
can be reduced to a sequence of monotonic loadings by taking
Masing- and memory-behaviour into account.

2. Load - equivalent notch strain relationship can be established
by known approximation formulas.

3. Hencky's rule in combination with boundary conditions of the
notch element proves to be an excellent tool for relating

principal stresses and strains to equivalent stresses and strains.

4, The procedure proposed delivers complete information about the
multiaxial elastic-plastic stress and strain state at the notch.
Incorporating a multiaxial fatigue parameter it can be employed for
fatigue 1life predictions with no need of extensive nonlinear
FE-analyses.

5. The method is restricted to proportional 1loading. Arbitrarily
nonproportional loading requires further developments.
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SYMBOLS USED
E = Young's modulus eP = plastic strain
ET = Tangent modulus eq = equivalent strain
Ktq = equivalent stress v = Poisson's ratio
concentration factor vt = variable Poisson's ratio
S = nominal stress o = stress
S' = modified nominal stress o' = deviatoric stress
Sp = plastic 1limit load do = stress increment
a = stress ratio 62/61 Cnsth = net section stresses
5* = stress ratio ¢g/0, according to common
e = modified nominal strain structural analysis
o = principal stress direction S = equivalent stress
[ = surface strain ratio 52/61 oy = yield stress
€ = strain o=g(e) = stress-strain
de = strain increment relationship
Subscripts
1,2,3 principal stresses,strains
elastic quantities
q equivalent quantities
r,6,z cylindrical coordinates
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APPENDIX

Calculation of the principal quantities
with Prandtl-Reuss equations

The steps required for calculating principal stresses and

strains for given equivalent stresses and strains are listed below.

1. Incrementation of eq- Aeq = (eq-eY)/number of increments.

2. Stresses and strains at yield initiation represent the initial
values.
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3, Calculation of the plastic equivalent strain increnent Aeqp

Eq 31 = %q,3%qr  Tg,de1 T g(eq, ju1) (A1)

Ae P =& - €

& = tq,e1 7 2,5 7 a1, (e

y., Calculation of the stress and strain increments

E'Aeqp

2 3
N 3-(1+v¢)-aq-Aoq - 2’(¢61'-02')'62" T -
(1+vg) oq' + (v+p) oo’

Aoy = X_:_g_ « Aoq + §J(¢61‘—02').E.Asqp
1+ vo 2 (1+vg) -

(AM)
%q

Aeq, Aep, Ae3 according to Eq. (5) to (7 )

5. Summation yields to the stresses and strains referring to

€q,j+1°

1 =03 + Ao €

3+ 3 jr o F3+1 T8 3 (A5)

6. If the given equivalent strain is not reached yet, calculate the
deviatoric stresses o3', Eq (8) to (10), increase j by one and go
to step 3.
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Shallow smooth notch S - €] Equation S-egp-point
path used used for
(Sy» €r)
p =35mm
t =10 mm - 0-1 1 =
R=170
" 1-2 2 1
2 -2 2a 2
Shallow sharp notch 2'- 3 1 -
3-4 2b 3
= 3mm
t =10mm Si—"» 4 -5 2a 4
R = 70 mm
5-6 2b 5
6 -6 2a 6
Deep sharp notch 6'=7 2a 4
f:= 3"‘"1 ) Table 1: Construction of the
=10m - 4 - -
R=70mrr':1 Joad strain path in Fig. 4
Figure 1 Structures and loading Table 1: Construction of the
cases investigated in (5). load strain path in Fig. 4
At

/d /AU

| I

T T
&€

1

1
|
load sequence

.

Figure 2 Masing-behaviour.
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Figure 3 Memory-behaviour.

O FE cyclic
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Figure 4 Cyclic behaviour of a notched component. Nominal
stress versus notch maximum strain.
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Figure 5 Cyclic behaviour of a notched component. Principal
stress path.
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Figure 6 Structure of the approximation procedure.
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Figure 7 Comparison of Hencky's and Prandtl-Reuss' flow rule.
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Figure 8 Notch stress and strain estimates using Neuber's rule.
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