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DEFORMATION OF CRACKED BODIES

V.M. Radhakrishnan, *

Deformation of a body containing a moving crack

will be a function of both the applied stress and

the crack length. Based on a phenomenological appro-
ach, an analysis is presented to discuss the cases
where crack propagation takes place under constant

load and constant strain rate.

INTRODUCTION
—

Deformation and its rate of a body containing a moving crack are
controlled and contributed by both the load acting on the body and
the crack length and its growth rate. A typical example where
such a situation arises is the crack growth due to creep which is
recognised as one of the major causes of failure of components in
high temperature pressure vessels. Several parameters like stress
intensity factor, reference stress, crack opening displacement and
énergy rate line integral C¥% have been tried to correlate the
crack growth rate, da/dt, with varying degrees of success.

Of these, C* has been used to a great extent recently. However,
the line integral is applicable to (non-linear) elastic materials
only, where the energy required to crack propagation is the sur-
face energy S of the newly created surfaces. If two specimens
with crack lengths a; and a, are loaded to the same deflection
A1 , as shown in Fig. 1(a), the energy difference is only that
due to the new surface formation. But when a crack in an engi-
neering material moves from ap to a, due to the load
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application ( Fig. 1 b) the énergy supplied will be not only for
the new surface Creation but also for plastic deformation near the
crack zone. Though the initial and final conditions of the cases
in (A) and (B) are the same, the energy requirements are
different. It should also be noted that, unlike the Griffith
approach of energy balance, the line integral approach is not
based on any energy balance fracture criterion. For a realistic
approach, the eénergy supplied to the material must be equated to

energy absorbed has to be computed - a problem that cannot be
easily solved without many assumptions. Hence it is doubtful
how effectively the energy rate line integral can be extended to

In the following a phenomenological approach to crack growth

PARAMETER  DEVELOPMENT

Consider a body containing a crack subjected to a load. The crack
is growing and the load point deflection is contributed by both
crack growth and creep deformation at the net section, as very
often happens in bending type of loading. The Tsochronous load-
deflection curve, as shown in Fig.2., can be given by

ol
A= Gy (P/Ry) (1)
where C(tg is the time dependent compliance, P, is a constant.
With time both the crack length a and the compliance increase,
The change in compliance dC with change in crack length da at
larger values of a will be more than at smaller values of a.
So the compliance can be given as

C(t) = a, (a/ao) (2)
as shown in Fig.3, a_ and ¥ are constants., The reasonable-
ness of the assumption can be explained as follows. Considering
equation (1) , the compliance is equal to the load point deflec-
tion at load P = P where PO is a reference load which can be
taken to be small enough as to cause negligible creep deformation,

(3)
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In such a case any increase in load point deflection will be caused
by the increase in crack length, so that

JAN L( a ?}- (4)

So it can be taken that the compliance C¢yy is also dependent on
the crack length a through a similar relation as given in eqn.(2).
Now from eqn(l) we get i
v - R +
A:‘a"(a/ao) (P/Py) a + a, (a/ay) &t = P (5)
P
o

In the case of brittle materials where the contribution to defor-
mation by load P will be negligible, the exponent L in eqn (1)
will tend to zero and the deflection rate will be governed by

the crack length and its growth rate only.

DATA  CORRELATION

°
Under constant load condition, the loading rate P will be equal to
zero and so we get the crack growth rate da/dt &R  where the
parameter R is given as

R = 2’/ & a 3= (6)

p
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where P and M are load and bending moment per unit thickness.
The above relation has been shown to describe well the experimental
data on 6061 Al alloy tested at different temperatures (1,2) with
centre notch (CC) and deep notch CT type specimen geometries, as
shown in Fig.4,

In the case of creep brittle materials which show negligible
deformation, the load point deflection will be contributed by the
crack growth only. In such a case, the value of the exponent
in eqn.(1) will tend to zero and the crack growth rate will depend
on load point deflection rate, as has been shown in the case o

6242 Ti alloy (3).

Many experiments have also been carried out under constant
deflection rate controlled conditions. Two such cases for type
316 stainless steel tested at 594°C  are given in Figs. 5 and 6,
the raw data taken from references (4,5). In the first case it is
a centre crack type of specimen. The total deformation over a gage
length of 100 mm was only around 2.5 mm. Since the total defle-
ction was rather small, 316 type stainless steel can be considered
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as creep brittle material at 5949C  in the presence of a dominant
crack. In the second case, it is a CT type of specimen. Here
also the total deflection was around 4 mm. It can be seen that
the load drops in both the cases after reaching a maximum, but

the crack length continues to increase.. {t can be observed that
there are well defined regions where a, A . P remain constant.
The respective values of these rates are given by the side of each
curve. The full lines in Fig. 5 are due to the present author.
The units are the same as given in the reference. From eqn. (5)
the crack growth rate is given by

-_a a, ¥-1 Pt _ & a e

Since the material 316 type stainless steel at 594°¢ shows negli-
gible deformation in the presence of a dominant crack, the exponent
oL can be taken to be zero in which case a correlation between A
and a should be obtained. Fig. 7 shows the relation between
a and A . The fit appears to be good; nevertheless there is
some scatter. This indicates that the material at 5940C may be
in the transition region from creep brittleness to creep ductility
condition. A value of oL = 0,5 isg tried with the constants

a, = 1 mm and =1 and the result is shown in the same figure.
The description appears to be very good, specially so, when the
crack growth data for two geometries obtained at two laboratories
could be correlated with the proposed parameter.

CONCLUDING REMARKS

The phenomenological approach to crack growth problem is based only
on the load-deformation relation of the body in the presence of

a dominant crack which is growing. It does not assume any crite-
rion for fracture at the crack tip. The relation developed
appears to be applicable to cases of crack growth under constant
load creep conditions. In such a Situation, at any given time
equation(l) will be valid with a positive value of the exponent .
The loading rate dP/dt will be zero. In the case of constant
deflection rate controlled condition, one has to be careful in
interpreting the eqns. (1) and (5). The crack length increases
with decreasing loading rate. So dP/dt will be negative.

Hence, in the Isochronous deformation - load relation, the value
of the exponent may turn to be negative. With proper interpretation
of the loading conditions, eqgn. (5) can then be successfully

used to describe the deformation rate of a body in which a dominant
crack is propagating under the action of the applied load.

As pointed out earlier, the other parameters do not correlate
well the crack growth rate under creep conditions. The scatter is
very large. Even the energy rate integral C#* which is often
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tried to correlate crack growth rates shows systematic scatter (6)
and the scatter band is of one order of magnitude. In the absence
of a well defined and developed fracture criterion, the above
analysis appears to give a reasonable approach to describe the
crack growth rates in deforming bodies.
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Figure 1 crack growth in elastic and engineering materials
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Figure 2 Isochronous p-A relation
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Figure 3 Compliance vs. a
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Figure 5 vVariation of p, A, a with time
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Figure 6 vVariation of P, A, a with time
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Figure 7 A vs. the parameter R
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