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RETARDATION OF FATIGUE CRACK GROWTH BY A SINGLE OVERLOAD

J.N. EASTABROOK*

An approximate calculation is made of the way in which the
residual stresses due to a single overload affect the subse-
quent growth of a fatigue crack growing under constant-
amplitude loading in plane-strain conditions. The calcula-
tion is free of arbitrary parameters and describes the effect
in terms of a residual stress intemsity factor which depends
on the stress intensity factor of the overload and on the
crack growth since the overload occurred. It accounts for
the variations of growth rate observed in published experi-
ments, including the phenomenon of delayed retardation.

INTRODUCTION

In the design of damage-tolerant aircraft structures, small cracks are
postulated to exist in various parts of the structure and their growth by
fatigue during service is predicted using laboratory data. Aircraft
service loads cause irregular fluctuations of stress, and the statistical
parameters describing these fluctuations depend on the type of aircraft,
the type of service and the part concerned. It is uneconomic to perform
flight-simulation fatigue tests using stress sequences representing every
case, and at present the crack growth is often predicted from constant-
amplitude data by assuming that the growth during each cycle is the same as
in constant-amplitude fatigue.

This assumption has often been found to give unduly conservative
results, but no reliance can be placed on this apparent safety factor,
because it does not always exist. Reliable methods of predicting crack
growth in the presence of these so-called "load interaction effects" are
therefore being sought. One approach is to attempt to identify some of the
important phenomena by experiments using very simply load sequences. A
sequence demonstrating the major effect, which is crack growth retardation
following an overload, is shown in Fig 1a, and its effect on crack growth
is sketched in Fig 1b.

Many physical phenomena have been considered as causing or influencing
this behaviour (1). At present most attention is paid to crack
closure (2,3) and residual stress (4,5,6). Some empirical methods of pre-
dicting crack growth have been based on the residual stress concept, but it
remains an open question whether the residual stresses which are likely to
be present could produce the observed retardation. A simple model has
therefore been set up, allowing a calculation of the effect of residual
stresses to be made by the methods of linear elastic fracture mechanics,
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for a §1ng1e overload in a constant-amplitude Sequence under plane-strain
conditions,

away grom the point of overload the crack rate falls rapidly, but not
lmmedlatgly, to a minimum and then slowly returns to normal., The present
calculation which, though approximate, contains no arbitrary constants
reproquces this behaviour and accounts for both the magnitude and the '
durgtlon of the reduction in growth rate. This strongly suggests that
residual stress is the most important factor in the case considered, and
hence pProbably also in the general case. If so, a generalization oé the

calculatl . may improve e
Prese (o) oV predlctlon of fati ue c
T nt th 24 rack growth in

ggﬁCEFFECT OF A PREVIQUS TENSILE LOAD ON CONDITIONS AT THE TIP OF A GROWING

surrounding the tip of the crack is in a state of Plane strain, the mode IT
gng moqe ITI stress intensity factors are 2eroy and the 'mode I stress

i s . .

ntensity factor KI 1s gradually increased from zero. Plastic shear

tion, and the volume of the zone of plastically-sheared material increases
Because of the assumption of plane strain, it is only

necessary to c?nsid?r a section through the body perpendicular to the line
of tbe crack tip (Fig 2). The size and shape of the plastic zone for any
particular value of KI depend on the yield stress of the material and its

strain-hardening properties, but even for a non—strain—hardening material
they are not well established. However, there is general agreement that the
shape is something like that shown in Fig 2, with rather small extension in
the plane of the crack. Various numerical analyses have found the lobes to

be tilte? either forward or backward by up to 20° from the position shown
The magnitude p(8) of the radius vector from the tip of the crack to the
boundary of the plastic zone, at any angle 6 , is given approximately by

2
K
ce(oy [ L €))]

Tt

p(8) =

where C is a constant, f(9)

) is a function of ¢ defini t
the plastic zone and Te 7ine the shape of

is the flow stress in shear.

If KI is slowly reduced after reaching a value K s reverse
max

plastic flow ?egins‘almost immediately at the crack tip, and the size of the
zone of material which is being Plastically deformed in the reverse

direction i i i
lncreases as KI 1s reduced. By the time KI reaches zero, the

linear dimensions of the reverse plastic zone are calculated to be about a
quarter of the forward plastic zone (7). The material of the reverse
plasylc zone is all on the point of flowing, and hence must contain residual
Strains appropriate to shear stresses comparable with the flow stress in
The rest of the forward plastic zone has not experienced

reverse plastic flow and hence also contains residual strains with
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accompanying residual stresses. .The residual strains persist during any
subsequent crack growth, and should be taken into account, along with the
applied stress or displacements, in any calculation of the stress intensity
factor of the longer crack. These strains are accompanied by residual
stresses which extend, in principle, through the whole body. It would be
quite wrong to suppose that they have no effect when the crack tip has
grown out of the original plastic zone; though it should be expected, in
conformity with Saint-Venant's principle, that the effect will be small
once the crack growth exceeds the linear dimensions of the forward plastic
zone.

As there is no generally agreed solution for the residual strains in
the plastic zone, and as the accurate evaluation of the effect of such
strains on the stress intensity factor would be a formidable task, a simple
model will be used to assess their effect on the subsequent behaviour of
the crack. It is required to estimate the contribution of the residual
strains to the stress intensity factor (assuming that the external load is
such as to prevent contact between the faces of the crack), when the crack
tip has advanced a distance a beyond the point at which Kmax was
applied and removed.

The forces exerted by the material of the plastic zone on the rest of
the body because of the presence of residual strains are taken to act at the
same value of y but at the plane x = 0 (Fig 2), rather than at the
elastic-plastic interface. 1In other words, the plastic zone is replaced by
a slit of equal height at x = 0, and the stresses which it exerted on the
surrounding elastic material are represented by surface tractions on the
two faces of the slit. The shear stresses are taken to be Te 5 over the

height of the reverse plastic zone, falling to zero at the height of the
forward plastic zone. The latter is, from equation (1),

m Kmax ’ Kmax 5
y = Cf(-) = B (2)
max 2 rf rf
where B is a dimensionless constant. Calculated plastic-zone sizes vary
widely, but a range of B from 0.03 to 0.04 covers several recent calcula-
tions (12). Although the residual normal forces seem likely to be smaller,

no quantitative information is available and their effects will not be con-
sidered further: the contribution of the shear forces will be assessed
independently, bearing in mind that the normal forces may also be signifi-
cant. The elastic problem to be solved is thus that of the curiously-
shaped body shown in Fig 3, subjected to the stresses indicated. The shear
stresses on the front face of the slit tend to reduce the stress intensity
factor; those on the back face to increase it.

It is proposed to approximate this configuration by that shown in
Fig 4, in which the slit representing the plastic zone is extended to
infinity and the stresses on the back face of the slit are represented
either

(a) by a point force at Ynax ©dual to the integral of the stress

over the back face (curve a), or

(b) by a mirror image of the real stress distribution about the
point Y max (curve b).
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It is hoped these models might bound the real case.

The stress intensity factor can now be calculated using the results of

Rooke and Jones (8). For a tangential force Q applied at y , they give
K. = — p(g)
X = (3)

where PEY = (1 = £9)(1.2943 + 0.0044E + 0.1289¢°
+ 10.898° - 22.146% + 10.96€7) (4)
and
£ = ‘y—i‘—a N (5)

For a distributicr of shear stress, 7t(y) , symmetrical about the crack
plane, the stress intensity factor become

2
0
let
c .o
Y max
a
= )
Y max
) = X
Tt
J
Then
z = Y
: Y + A
and
K = 2
1T = th(Y)P(E)ymade (8)
0
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which becomes, using equation (2),

K =]
- 1 I 2 Y

—_ = —— P'l=)dY = A 9)
! /B Kmax /ﬁ! T (A) R :

is the function obtained from equations (4) and (5), and ¢ 1is
alone.

where P'
a function of A

: The contribution of the front face to the integral in equation (9) is

‘ |
f 1(0e'(F)ay
0

The shear stress on the back face is the reverse of that on the front
face, so its contribution is, for model (a)

i
- P'(:l—)[ T(Y)dY
0

where P'(1/A) is the value of P' when Y is 1 ; and for model (b)

2
- j (2 - Y)P'(%)dY
i

The residual opening-mode stress intensity factor Kres for the shear

: stresses is therefore given by

K
—IB_ = s (10)

max

where for model (a)

i
1 1

- Ny = 2 X\ _ pr( 1
s = b (W) = ()/ e (F)ay - 2 (A)Of T(Y)dY (10a)
and for model (b)
i 2
_ . 2 (Y)gy - _ (X
p) = o, (A) = [T(Y)P (A)dY fT(z )P (A)dY . (10b)
3 1
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The two expressions have been evaluated for the stress distribution
shown in Fig 4, which is

“ - 1
T = -1 0<Y <y

(11)

4 1
T = ‘5(1 Y) Z<Y<1

(the negative signs indicate that the forces are towards the crack). The
results are shown in Fig 5. Kr is negative and thus tends to close the

crack except at high values of A where a small positive value is calcu-
lated. The most negative values are of order Kmax B and are within 127

of each other for the two models, but the effect persists about 50% longer
for model (b). The results are not very sensitive to the way in which T
varies with Y : in the extreme case where T igs put equal to -1 over the
whole range of Y from 0 to 1 » the negative peak of Kres is increased

by about 10% and the effect persists 10-20% further.

APPLICATION TO CRACK GROWTH AFTER A SINGLE OVERLOAD

Suppose now that the crack growth following the application and removal of
Kmax is by fatigue under constant-amplitude loading as in Fig 1a, such

that the minimum stress is zero (so the stress ratio R is also zero) and
the peak stress intensity factor Kp is significantly less than K

The following provisional conclusions may be drawn from Fig 5. Very
little crack growth can occur if Kp/Kmax is less than VB , because the

residual stress will, in that case, not allow the crack to open once the

crack growth a 1is about 1% of the plastic-zone height Y max At slightly

higher values of K » the crack may grow a small fraction of before

Y max
stopping. Continued crack growth occurs only if Kp is greater than about

1.25Kmax/§ - If B has the value 0.04, for example, the crack will
shortly cease to grow if Kp is less than about O.ZSKmax . At higher
values of Kp » the crack will start to grow as if there had been no over-

load, but will rapidly slow down, passing through a minimum growth rate
when a/ymax is about 0.08 and thereafter gradually accelerating, to reach

nearly normal rates after growing a distance approximately equal to the
height of the plastic zone. Note that the model 'predicts’ crack closure.

This behaviour agrees qualitatively with the observed behaviour of a
crack growing under constant-amplitude fatigue loading and subjected to a
tensile overload during a single cycle (see Fig 1). Fig 5 could be used,
along with data on crack growth at constant amplitude, to estimate crack
growth rates after the single overload of Fig 1, by adding K to the
applied maximum and minimum values (Kp and zero). tes

However, before a numerical comparison is attempted, it must be noted
that each normal loading cycle also produces a plastic zone at the tip of
the crack. This raises two important considerations: firstly, linear
elastic fracture mechanics is usually considered to be strictly valid only
if the plastic zone at the crack tip is small compared with the region in
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which the stress field in an elastic body would be adequately.represented
by an expression of the form

kf(8)/V2nr

where r and 6 are polar co-ordinates from the crack tip; s;condlz, ;Eznt
or subse
plastic zone of each normal cycle affects the value of Kres

cycles.

The first consideration will not affgct the conc1u519ns Eei§21:§azﬁ
crack arrest, since the size of the plastic zone at Fhe t;p oOWth Crack
would then be zero; nor would it affect the c§1culat10n of gr N el

i i than - K , since then the plastic zone si
K is only a little greater res

B(K + K )2/'(2 will be small; but K  will often be such that the
p res f p

4y isiis
plastic zone height is more than a , and then the valld;ty gf expres::ozis
p ; & _
i i echanics is not assured. owever,
based on linear elastic fracture m ) v 2
cussed later, the error may turn out to be acceptable even in this ca

As to the second consideration, some allowancs forlthi iiiscgfogrowth
. . X . a

i easily incorporated if the calcu
previous normal cycles is : : Son o o

i sted, by use of measu
rate 1s to be made, as previously sugge " h el

litude. Then the effect of the ow
growth rate at constant amp ol e Cataes dnered
i itute one overload cycle for one no L cy : ;

vy 1o i sts that if K is the residual stress intensity
in Fig 1a). This sugge -

factor due to one normal cycle, the maximum and minimum values of K should
be shifted, not by Kres , but by an amount KS , Where

(12)
s - K
KS Kres resp

and K is the value of K i obtained by substituting Kp for Kmax
ats : i he minimum

i i 10). Then the effective values of t

in equations (2), (9) and ( e i

and maximum K are K and K_+ KS , so that the crack g

obtained from the usual constant-amplitude curves using

/ = K
AKots P
and
K
R FER - N (13)
ef f Kp + K

Note that this calls for constant-amplitude curves at negative R .

Some error may remain after this correction becaus? it does not all;w
for interactions with other cycles of the constant—amplltudg sequiggiﬁt t
might be possible to take these mult%ple sec?ndary effects into a ,
but for this first discussion they will be disregarded.
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Equation (12) can be written, using equation (10)

K
s _ a
7 tefl) ) "

P

where. yp 1s the size of the plastic zone produced by K (as in
equation (2)). This equation should be valid when K  is small compared
with Kmax » as discussed in the last paragraph but two. It also holds

h . ) .

when Kmax 1s equal to Kp (Ze no overload) because then the correction

;g ze;o, as it sh?uld be. Therefore it may well be a tolerable approxima~
1;on or 1nt§rmed1ate values, in spite of the problem with the validity of
near e%astlc fracture mechanics. For computation, equation (14) can be

written in the alternative form

1{s) _ 2
= Kp = Bo(A) - ¢(8A) (15)

where B8 1is the overload ratio K /K
. Th i i
e Ampranstion max’ $p e results are shown in Fig 6

value for crack gIOWth) that is if

-1

K

B s

g < 1+ K— (16)
T P

For a given value i i
: ue of B , continued crack growth will therefore occur only

=1

K
B S
z 1+ T 17)
T P

min

wher ; .. .
e (Ks/Kp)min 1s the minimum of the appropriate curve in Fig 6. Let

the correspondi i

or P ng value of A be Amin « If Kp 1s too small to meet the
condltlon.(17), crack arrest will occur at some value of A less than
Amin - Fig 7, derived from relation (17) and equation (15) or Fig 6, shows

ES; Efedicged boundary between continued crack growth and crack arrest as a
ction o KP/KT and the overload ratio 8 5 for» B equal to 0.04.

COMPARISON OF PREDICTED RETARDATION WITH PUBLISHED EXPERIMENTAL RESULTS

:2gya:£ Eze p;blished measurements were made under plane stress conditions
erefore not suitable for comparison with the i

; e present plane strain
Ziliglatlon. In other work, the crack advance after overload was measured
e surface of the sheet or plate with a travelling microscope. Robin
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and Pelloux (9) have demonstrated by counting striations that the crack
retardation after multiple overload is greater at the surface of a 12.7 mm
plate of 2124-T351 aluminium alloy than in the middle, and no doubt the
same is true for a single overload: thus surface measurements probably
over—estimate the crack retardation under plane strain conditions.

Wei et al (10) have used an electrical method, which averages crack
growth along the crack front, for measurements on 2219-T851 aluminium alloy
16.5 mm thick at a stress ratio R of 0.05 and an overload ratio of 2.0.
Constant-amplitude measurements, made by the same group (11), are available
for the same alloy 12.7 mm thick, but not for the negative stress ratios
needed for the method of calculation suggested above. To make some
comparison, the common approximation that compressive applied stresses have
no effect during constant-amplitude fatigue crack growth has therefore been
used. The constant-amplitude data was extrapolated slightly to cover the
range from R = 0.05 to R = 0, and was used with effective values of AK and

R defined by

A

Moge = OK
0.05K_ + K_ 0.05Kp *K,%» 0
Regr = "+ K,
P F (18)
Boge = K +K
0.05K + K < 0
Ragg = ©

to calculate the ratio of the crack growth rate after overload to the rate
before overload.

In Fig 8 the shaded area is the scatter band of Wei et al, and the
curves are calculated for B = 0.03 and 0.04, which encompass the range of
recent numerical calculations (Ref 12, Table 1), and for models (a) and (b).
The curve for B = 0.03, model (b), lies quite close to that for B = 0.04,
model (a), and has been omitted for clarity. The general way in which the
growth rate depends on the distance the crack tip has moved since the over-
load is well described by the calculation, and the magnitude of the reduc-
tion is roughly equal to that observed.

The centre-section measurements (9) for an overload ratio of 1.3 would
be suitable for comparison with the present plane-strain calculation,
except that they were made after the application of two successive over-—
loads. The comparison is nevertheless made in Fig 9. The value of T

was estimated from data in Ref 9, but as constant-amplitude data for the
2124 alloy were not to hand, the data for 2219 alloy was used, as before,
to estimate the crack advance for given values of AKeff and Reff « (It
is not thought that the substitution will cause much error, because the
calculation is concerned only with the ratios of crack rates, rather than
with absolute values.) The difference between the calculated and measured
curves is similar to that between the surface measurements for one and two

overloads (13).
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DISCUSSION

Although several sweeping assumptions were made in the course of the

analysis, the calculated retardation agrees qualitatively with the results i
of a number of experiments and quantitatively with one or two cases where

a numerical comparison was feasible. 1In particular, the calculation gives

a rational explanation of the phenomenon of delayed retardation.

The assumption that the crack tip is growing through material which
has not been deformed by the overload is false for small crack extensions.
The high deformation of the material just in front of the crack tip at
overload may be the reason for the crack acceleration which has sometimes
been observed for a very short distance following an overload, since prior
deformation can increase crack growth rate (14,15). However, the effect

on a prediction of total crack growth would seem to be very small, since
the acceleration occurs over such a short distance.

The model gives a straightforward qualitative explanation for the
increase of crack opening stress after an overload, but does not require
any measurement of crack closure. For the case considered, in the absence
of general plasticity, the effect of an overload can be described in terms
of a residual stress intensity factor which is calculated from the flow
stress and the overload stress intensity factor in the way shown.

An extension of the analysis to positive and negative R values and
to multiple overloads would be highly desirable, to provide a sound basis

for a general method of predicting crack growth under variable

~amplitude
loading.

It appears that any extension would need to take account of the

effect of zone overlap due to the finite size of the plastic zones in the
x direction.

CONCLUSIONS

The major effects of a single overload on subsequent fatigue crack growth
under plane-strain conditions can be described in terms of a residual
stress intensity factor associated with the stresses which the material of
the overload plastic zone exerts on the surrounding undeformed material.
An-approximate calculation of the effect on subsequent crack growth of this

residual stress intensity factor agrees with limited experimental
information.

LIST OF SYMBOLS

a crack extension beyond point of overload

A a ®
. /ymax
dimensionless constant

c a constant

KI mode I stress intensity factor (SIF)

Kmax maximum value of KI
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LIST OF SYMBOLS (concluded)

K
P

K
res

B es
p, p'

¢ (A)

peak SIF of the constant—-amplitude sequence
residual opening-mode SIF due to 'Kmax
residual opening-mode SIF due to Kp

Kres - Kresp

threshold SIF for fatigue crack growth (R = 0)

twice the amplitude of SIF in a fatigue cycle
effective value of AK to account for residual stress
deéined functions of y and a

radial polar coordinate from the crack tip

stress ratio of fatigue cycle

effective value of R to account for residual stress
T/Tf

cartesian co-ordinate

cartesian co-ordinate

height of plastic zone corresponding to Kmax

height of plastic zone corresponding to Kp

y /ymax

overload ratio Kmax/Kp
angular polar co-ordinate from the crack tip
dimensionless variable y/(y + a)

radius of plastic zone in direction .8

shear stress

flow stress in shear

a function of A alone
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Fig4 Further simplification of the elastic problem
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Kres )
Kmax

A/Ymax 2
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e / — — = Kpg a (far side lumped)

K resp ( far side distributed )

...... Kresb ( T=-1.0 until ymay)

Fig5 Dependence of residual stress intensity factor on crack extension:
various approximations
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Fig6 Estimated shift of the residual stress intensity factor due to a single
overload, for various values of the overload ratio
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