DAMAGE-TOLERANT AIRCRAFT DESIGN

H.P. van Leeuwen

Actions to be taken by an aircraft designer to realise a damage-tolerant structure and to have it certified are listed. Relevant work of the NLRA is described.

1 INTRODUCTION

Present-day Airworthiness Requirements call for a so-called damage-tolerant aircraft design. In contrast to the safe-life philosophy adhered to earlier, the fail-safe or damage-tolerance philosophy allows the existence of flaws already at the time of the first flight, or developing later on in the life of the aircraft, due to fatigue, corrosion or accidental damage. It has to be demonstrated by analysis and/or test that the structure can sustain an appreciable load (of the order of limit load) in the presence of such a flaw, and that the flaw grows at such a low rate that it can be detected early enough to prevent a catastrophic failure.

The actions to be taken by an aircraft designer to realise a damage-tolerant structure and to have it certified have been presented by T. Swift (1) of the FAA and are listed in the left-hand column of the table below. The right-hand column lists relevant studies conducted at the NLRA. The various actions required will be explained briefly and the NLRA work will be reported on.

REQUIRED ACTIONS

<table>
<thead>
<tr>
<th>Define aircraft usage, missions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop load spectra, sequences.</td>
</tr>
<tr>
<td>Select critical locations for an evaluation</td>
</tr>
<tr>
<td>Develop stress spectra for those locations.</td>
</tr>
</tbody>
</table>

RELEVANT STUDIES AT NLRA

| Aircraft Integrated Data-System Records, usage analysis of B-747 aircraft operated by KLM, SAS and SWISS-AIR. |
| AIDS Records, load monitoring RNLAF combat aircraft. |
| Development of test spectra TWIST (transport aircraft), PALSTAFF (fighters), HELIX/FELIX (helicopters). |

*)National Aerospace Laboratory NLRA, P.O. Box 90502, 1006 EM Amsterdam, The Netherlands
REQUIRED ACTIONS

Determine environmental conditions for those locations.

Compile crack growth data for each material and environment.

Compile fracture toughness data.

Produce crack growth curves.

Determine residual strength.

Decide on inspection techniques.

Determine detectable crack length.

Decide on inspection intervals.

ALTERNATIVE: Conduct full-scale test.

2 AIRCRAFT USAGE

At the very beginning the designer has to decide what tasks the aircraft will have to perform. Will it be a civil or military transport, or will it be a combat aircraft? This will of course have a major effect on the design configuration and on the loads to be encountered in service. In the case of a civil transport it will make quite some difference whether the aircraft is designed for the transatlantic route, where at the usual high altitudes relatively little turbulence is experienced, or whether it will be operating on short-haul routes mainly over land. Similar considerations apply to military aircraft where long-range bombers, air defense or ground support combat aircraft. While for transport loads will mainly due to atmospheric turbulence (gusts), and manoeuvre loads will be relatively unimportant, the reverse applies to a combat aircraft. Relevant information is obtained through measurement or monitoring of usage and loading of aircraft already in service.

The NLR is engaged in such activities for both civil and military aircraft. Programs like the ones to be described are undertaken with a trifold aim:

- the provision of design data for future aircraft;
- the provision of loads data for use in realistic testing of materials, components or full-scale structures;
- the comparison of actual usage of the aircraft to the design usage, with the aim to adjust life estimates and inspection periods.

3 USAGE MONITORING OF B-747 AIRCRAFT

B-747 aircraft operated by KLM, SWISSAIR and SAS, who collaborate with UTA in the KSSU group, are equipped with an Aircraft Integrated Data System (AIDS). Under joint sponsorship of the Netherlands Civil Aviation Authority and KLM Royal Dutch Airlines, NLR has developed and is operating a program whereby data on usage and loading of a sample of the aircraft involved are extracted from the AIDS records, processed and analysed, and stored for later use. The program is described in, De Jonge and Spiekhou (2) and Spiekhou and Van Lummel (3), and illustrated in figure 1. The AIDS system installed performs a continuous scanning of about 350 parameters. The data concern the flight as such, e. g. flight number, date, route, take-off weight. Furthermore they concern speed, Mach number, altitude, flap setting, etc., and finally data directly related to the loading environment, such as vertical acceleration, cabin pressure and instantaneous weight.

The AIDS cassettes from the aircraft are processed on a routine basis in the computer facility of the operator by means of a number of application programs. The NLR-conceived B-747 FATIGUE program is one of these. The data extracted are stored on a magnetic tape which is sent to NLR for further processing. The AIDSREG program performs an extensive data quality check. As a result a flight may be totally or partly rejected. In the latter case a flag is added to the data indicating the particular error.

In August 1983 a total of 16222 flights covering about 80700 flight hours had been stored in AIDS FATIGUE DATA BASE.

The data are analysed by means of the ANALY program consisting of a usage statistics part and a load statistics part. The former produces general flight data tables and flight profile data tables. The latter produces vertical acceleration data and gust environment data. One type of flight profile data is the time spent in certain altitude bands and the related values of average weight and speed. The loads data are analysed using a "peak between means" counting method to be discussed later. Cabin pressure differential values are analysed because of their importance for fatigue of the fuselage.

One typical finding of the program is that during SWISSAIR flights from Zürich to Geneva the load factor experience is about as severe as that during a transatlantic flight to New York. It is anticipated that the results from the NLR AIDS FATIGUE DATA program will provide an important input to Boeing's Supplemental Structural Inspection Program as it is applied to KLM-operated B-747a.

4 LOAD MONITORING OF RNLAf-OPERATED COMBAT AIRCRAFT

Under contract with the Royal Netherlands Air Force, the NLR has conducted a load monitoring program for Lockheed F-104G aircraft, Van.Dijk (4). A similar program for the Northrop NF-5A/B aircraft has been in operation for some years now, De Jonge (5). Only the latter will be described presently. Approximately 20 percent of the aircraft in each squadron are equipped with a counting accelerometer of the so-called Fatigometer type. The instrument counts the number of times that a series of predetermined centre of gravity acceleration levels are exceeded. In addition, the number of manoeuvring flap actions is counted. Counting results are read out after each flight and entered in a debriefing form, together with information about mission type, flight duration, store configuration etc., see fig. 2. Data obtained in this way provide adequate information about the average load factor experience, the mission mix and the mission load factor spectra. Changes in utilization, leading to changes in load experience, are easily observed.

In addition, an operational NF-5A aircraft was equipped with relatively simple multi-parameter recording instrumentation (fig. 3). The following quantities were measured:

- e.g. acceleration;
- strain gauge signal from centre wing bottom skin near rear spar;
- output strain gauge on manoeuvring flap actuator;
- speed;
- altitude;
- manoeuvring flap setting.
Spectrapol. This Swiss instrument is based on a microprocessor and provides on-board data reduction of a signal from e.g. a strain gauge applied at a critical location.

6 DEVELOPMENT OF TEST SPECTRA

The NLR has actively participated in the development of test spectra. TWIST, the Transport Wing Standard, was developed together with the Laboratory for Aeronautics and Astronautics at the California Institute of Technology. FALSTAFF, the Fighter Aircraft Landing Standard for Fatigue evaluation, was developed together with, apart from LBF, the Industrie-Anlagen Betriebs-Gesellschaft and the Flugwerke Emmen. HELIX/FELIX, load standards for helicopter rotors with hinged or fixed blades, were developed together with LBF, IABG, the Royal Aircraft Establishment and Messerschmitt-Bölkow-Blohm.

Presently work is going on for TURBIST, a standard load for turbine engine discs. In this program the three major European engine manufacturers participate, in addition to research institutes in France, Germany, the U.K. and Holland, and the University of Toronto. TWIST and FALSTAFF are already used all over the world in national and international programs of fatigue testing.

TWIST (De Jonge et al. (9)) is based on measured and calculated load spectra for nine commercial transport (Fig. 7). The smooth average spectrum was approximated by a stepped function as is shown in figure 9. TWIST consists of blocks of 4000 different flights. There are ten different flight types, ranging from very rough (type A) to very smooth (type L). As shown in figure 9, also ten gust levels. All in all the TWIST sequence contains 398665 gust load cycles plus 4000 ground-air-ground cycles. Figure 10 shows part of a particular flight. Often the spectrum is truncated, i.e. load level 1 is reduced to equal 11 or 111 to avoid overly beneficial effects of high loads on fatigue crack propagation rate. Sometimes parts of the sequence are omitted to simulate testing with "MINIWIST". FALSTAFF (Van Dijk and De Jonge (10), De Jonge (11)) is based on measured flight load-time histories pertaining to five different fighter aircraft types operated by three different Air Forces. The spectrum as shown in figure 11 differs strongly from TWIST in that it is non-symmetrical and convex. Figure 12 shows a particular flight contained in the block of 200 different flights. These are a mix of three different mission types with three different manoeuvring severities. The complete sequence contains 3996 load levels of 42 different magnitudes. Zero stress level corresponds to FALSTAFF level 7.3269. Taxi load cycles are associated with zero stress level crossings.

HELIX and FELIX (Ten Have (12)) are based on measured loads for the Sea King and the Sikorsky CH-53 representing the hinged rotors, and on measured loads for the Bolkow BO-105 representing the fixed rotor. Cyclic load data for the Westland Lynx were used for comparison in the latter case. The loadings contained in the sequence are grouped according to four types of sorties with three flight lengths per sortie. The spectrum is based on a predetermined sequence of sorties, a predetermined sequence of manoeuvres within sorties, and a fixed load cycle sequence within each manoeuvre. Figures 13 and 14 give examples.

With TWIST and FALSTAFF the load sequence is derived from the spectrum using a random draw technique. With HELIX and FELIX the spectrum results from the sequence by application of a counting method (Figs. 15 and 16). The loadings within one manoeuvre, however, were determined by applying the rainfall counting method to actual flight records. The results were grouped together in so-called mean-stress/alternating-stress matrices, from which the load sequence was derived using a random draw technique.
7 IDENTIFICATION OF CRITICAL PARTS AND THEIR ENVIRONMENTS

The possibility to apply the damage tolerance philosophy depends on the structural materials involved. If a material has a low fracture toughness, this means that cracks may grow in an unstable fashion, leading to catastrophic failure, before the crack has attained a size sufficiently large to allow detection by state of the art techniques. In this case the component cannot be considered damage tolerant. A safe life will have to be established on the basis of empirically determined lives to first crack and the appropriate safety factors. High-strength landing gear steels still fall in this category. If a material has a poor resistance to crack growth, the number of cycles or flights causing a crack to grow from the minimum detectable size to the catastrophic or critical size may be too small to accommodate a sufficient number (two or three) inspections. Present day engine disc materials are beginning to fulfill the requirements that cracks become critical at a length where they can be detected through non-destructive inspection, but this is still due to recent improvements in inspection techniques. Their fatigue crack growth resistance is still being studied. This involves growth studies of very small cracks, which poses several problems. When considering damage tolerance structures one can distinguish between single load path and multiple load path structures, and also between inspectable and non-inspectable structures. The size of the initial flaw to be assumed in analysis may depend on it, see figure 17 taken from de Jonge (13). In the case of multiple load path structures secondary members will take the load shed by the failing primary member. It is with such structures that the term "fail safe" originated. This classification has to be applied with caution since there may be a real chance that the secondary member has also developed a flaw. This is particularly germane to aircraft reaching or surpassing their design life. The penalty for having non-inspectable structure is that the design life must be less than half or one third of the number of flights needed to propagate a crack to its critical size. Apart from damage tolerance the expression "durability" is now being heard. This is defined as the ability to resist cracking, corrosion, thermal degradation, delamination (composites), wear and foreign object damage (Landy and Smithers (14)). It is with such and other considerations in mind that the structural design is scanned for critical items. Figure 18 gives the flow diagram for the identification of critical parts that require special treatment by analysis and/or testing. This figure was taken from a booklet prepared within the framework of a program involving NLR employees acting as consultants to AERITALIA with respect to damage tolerance of their G-222 transport. For the critical items identified also the service environment will have to be determined. It is well known that certain media may strongly accelerate crack propagation. Possible environments can include:

- atmospheric condensate (contaminated by e.g. chlorides and sulphates);
- sump tank water;
- salt spray;
- de-icing fluids;
- exhaust gas

Condensate usually forms when an aircraft descends from a high altitude where the temperature is low to a lower altitude where it is higher and humidity is high. Structural elements in the vicinity of galleys and toilets are known to be subject to much corrosion. Salt spray or salt fog occurs at airfields near to the sea shore and most dramatically on aircraft carrier decks. De-icing fluids applied to the aircraft itself or to runways can be quite aggressive to some materials. Exhaust gases emanating from engines but also from weaponry can be quite aggressive too.

Proof of damage tolerance may be given on the basis of detailed analysis of flaw growth in the critical item. For that purpose load or load-factor spectra will have to be translated to stress spectra. Stress-per-unit-load factors or stress-per-unit-load factors can be determined both by analysis and by testing. Basic flaw growth data for material and environment are to be obtained by testing.

8 CRACK PROPAGATION TESTS

Fatigue crack growth in light alloys as sheet, plate and forgings is studied spectra only at the NLR. In the last decade test results have been published at an average rate of four per annum. It would go too far to discuss all these results or even to list the reports. Instead some typical results will be presented.

Fatigue crack growth is studied for several purposes, e.g.:
- alloy evaluation;
- development of heat treatments;
- study of mechanisms;
- development of analytical models.

Figure 19 shows a forging that was designed especially to determine a set of characteristic engineering properties. Centre-notch flat specimens for fatigue testing are taken from the centre rib. Figure 20 gives a list of experimental heat treatments studied for the British AlZnMg alloy D11 5024, (Vol. 12 (15)). The heat treatments are compared on the basis of load cycles to propagate a crack from 2 mm half-length to 20 mm half-length, using a block type variation of load amplitude. Equipment for fatigue and simultaneous testing was not yet available at the NLR. Figure 21 shows how this crack growth life correlates with tensile strength.

Recent retained Schenck's data give crack propagation growth rates for four AlZnMg forging alloys tested under TWIST and FALSTAFF respectively. Ranking of the alloys was found to depend on the load spectrum applied. This means that material selection would be different for transport and for combat aircraft.

This is quite evident from figures 23 and 24, where the high-purity AlZnMg alloy 7475 is compared to the widely used AlZnMg alloy 2024 in sheet form. Note that crack growth acceleration and retardation due to high load amplitudes is much more pronounced for the weaker and tougher alloy 2024. These data were taken from Vanhille (17) and (18).

Figure 25 taken from Schijve et al (19) shows environmental effects on fatigue crack growth for the widely used sheet alloys 2024-T3 and 7075-T6. Note that crack growth rates are higher and environmental effects are more pronounced for the stronger alloy 7075 when tested under a gust load spectrum. Figure 26 taken from Vanhille (17) gives some more environmental effects for the alloys 2024 and 7075. Water spray was used to simulate condensate forming on descent from the cruise altitude. Salt water was sprayed with the aid of paint spray nozzles for a duration of two seconds halfway through each of 100 simulated flights. Van der Linden (20) describes the development of a data base of fatigue crack propagation results to be used for the checking of predictive models of crack propagation. Basically a gust load spectrum derived for the Fokker F-27 Friendship was used. The system was varied in a systematic way for more discriminative checking. This involved three different gust load intensities (frequencies) and three ground-air-ground cycle severities, giving nine conditions in all. The material was 2024-T3 Alclad sheet. Figure 32 shows a comparison of measured crack growth curves with those predicted with the
9 RESIDUAL STRENGTH TESTS

At the NLR precracked specimens of light alloy sheet, plate and forgings are tested to determine residual strength fracture toughness. The purposes of these tests are the same as listed for the fatigue crack propagation tests in section 8. A few examples will be presented.

Figure 22 shows some more results of the heat treatment studies of the Al2064 alloy DTD 5024 (Van Leeuwen (12)). It is seen that heat treatments involving a cold quench as a rule lead to relatively high tensile strength but low fracture toughness.

Fracture toughnesses of four forged alloys were reported in (Schab (16)). Three specimen types were applied: Compact Tension, Single Edge Notch Bend and Centre Crack Tension. Since as usual the ASTM requirements for valid Kc testing were not completely fulfilled "candidate fracture toughnesses" Kc are presented in the first two cases. The high ductility demonstrated in the tests on CCT specimens forced us to present the "effective fracture toughness" K e according to Feddersen.

\[K_e = \sigma (\pi a_c)^{1/2} \]

Here \(\sigma \) is the gross section stress at instability and \(a_c \) is the initial crack half-length. In addition the stress intensity factor \(K_0 \) at "pop-in" \(K \) was presented. \(K_0 \) refers to a small arrested crack growth increment at \(P \) relatively low crack. Figure 27 shows residual strength values of 2 mm thick sheets of the aluminium alloys 2024-T3 and 7075-T6 (Vlieger (22)). Shown are straight lines depicting failure at general yield and also the failure curve according to Feddersen, consisting of a curve described by

\[K_c = \sigma (\pi a_c)^{1/2} \]

and tangents to the points \(\sigma \) and \(2a_c = w \). Here \(a_c \) is the crack half-length at instability. \(K_0 \) is a useful measure of the "fracture toughness if \(\sigma \leq 0.5 \sigma \) and \(2a_c \leq 0.5 \). I.e. if the data points fall on the curve between these two points of tangency. Note that the ductile alloy 2024-T3 failed roughly at general yield. Residual strengths are determined also for riveted and bonded stiffened panels. This is done in support of and for the checking of models to predict residual strength of built-up structures. Figure 29 (Vlieger (23)) shows some early configurations tested. Saw cuts are made in the panel centre, these may or may not be sharpened by fatigue. The centre stiffener may be present and intact, absent or present and cut. Upon loading the crack may first grow in a stable manner to be slowed down or arrested when approaching an adjacent stiffener. Failure may be initiated by stiffener rupture or unstable crack growth in the sheet. Crack growth is filmed in and in later tests also measured with the electric potential drop method. Figure 30 (Vlieger (22)) gives examples. The top picture shows no crack growth upon initial load increase, then some stable crack growth at further load increase and final failure due to stiffener rupture. The bottom picture also shows some stable crack growth, but then an increment of unstable crack growth (horizontal branch), crack arrest in a rivet hole and final failure due to stiffener rupture.

10 PREDICTION OF FATIGUE CRACK PROPAGATION

At the NLR fatigue crack growth models were developed for two configurations, i.e., a through crack in sheet material and a corner crack in a lug. The first model, called CORPUS, copes with strong effects occurring under variable amplitude loading. The second so far does not have this capability. Van der Linden et al (21) describe the models in some detail. CORPUS is based on an empirical equation or law proposed by Paris already in the sixties.

\[da/dN = C(K)^m \]

Here \(da/dN \) is the crack growth per cycle and \(K \) is the range of the stress intensity factor associated with that cycle. \(C \) and \(m \) are empirical constants. Now \(K \) is the stress intensity factor, which can be written as:

\[K = \sigma_{max} \sqrt{a} \]

where \(S \) is the nominal gross section stress, \(a \) is the crack (half)length and \(\sqrt{a} \) is the (nearly)width. The function \(f(a/w) \) copes with variations in geometry. It has been documented accurately for a series of standard configurations. It follows that:

\[dK = dS = \sqrt{a} \]

The problem with variable amplitude loading is that AS will not simply equal the nominal stress range but has to equal the effective stress range \(AS \). This is because plasticity at the crack tip or plasticity in the wake of the crack will cause the crack not to close at zero stress or to close and to open at a stress different from zero, i.e. \(S \). Now

\[S_{eff} = S_{max} - S_{op} \]

and the trick is to predict \(S_{op} \), which will depend not only on the last stress range applied, but also on some stress ranges applied previously. This is because a high stress applied at some cycle may cause a large plastic deformation at the crack tip, which may show up as a hump on the crack surface or contour during later cycles when the crack tip has proceeded further. \(S \) is the stress at which the highest humps near the crack tip lose contact upon load increase. A complicating factor is that a hump may be flattened (reduced in height) upon application of some minimum stress \(S_{min} \). The model presumes that a hump has an effect only as long as the crack tip is inside the primary plastic zone that was formed when the hump was formed. Figure 31 depicts some successive steps in crack growth and development of opening stresses \(S_{op} \). Diagram (a) shows a succession of nominal stress cycles. (b) again shows the first cycle. (c) shows how \(S_{op} \) is obtained from an empirical relation between \(S_{op} / S_{max} \) and the stress ratio \(R = S_{min} / S_{max} \). Note that in more recent versions of the model \(S_{op} \) is calculated directly using the strip yield model of Dugdale and Barenblatt. (d) shows how \(S_{op} \) is related to the first stress range, and (e) shows how the crack does finally open at \(S_{op} \) during the second cycle. Further diagrams show development of further cracks opening stresses \(S_{op} \) and \(S_{op} \), and their decrease due to low stresses \(S_{op} \) and \(S_{op} \), with a lowered \(S_{op} \) remaining the governing opening stress until the fourth cycle, with \(S_{op} \) exceeding \(S_{op} \) and becoming the governing one. Figure 32 shows how well CORPUS predicts crack growth determined empirically. The model also accounts for the effect
on plastic zone size of a plane-strain to plane-stress transition as the crack grows relative to the sheet thickness. The second model is depicted in Figure 33. It essentially computes stress intensity factors at the crack front and along trajectories orthogonal to the crack fronts. Crack propagation is again predicted as a function of the stress intensity range using Paris' law. Stress intensity factors are calculated by finite element analysis using the ASKA system. The K-factors are deduced from the energy release rate calculated through the virtual crack extension and stiffness reduction method. Since this is rather cumbersome an approximation is made for many steps involving an extrapolation of K-values for growing crack size using estimated gradients dK/da. The accuracy of the approximation is checked at intervals. The accuracy of the model as such was verified by comparison of the predictions with fatigue test results. In these tests marker loads were applied to determine the crack front shape. For some calculations K-values are estimated from data banks for given shapes (quarter ellipse) rather than by FEM analysis. It is found that although stress intensities may vary strongly along the crack front, the latter develops in a rather stable manner, and K-values tend to converge. Care is taken to stay away from the free surfaces in order to avoid having to deal with plane stress effects.

11 PREDICTION OF RESIDUAL STRENGTH OF CRACKED STIFFENED PANELS

At the NLR two computer programs were developed to predict the residual strength of flawed built-up structures. ABREST predicts the behaviour of cracked riveted panels and BOND does the same for cracked adhesive bonded panels. The principles of the methods are described in Vlieger (24) and (25). The programs are described in detail in Vlieger and Sanderson (26) and Vlieger (27).

The principles are explained in figure 34. In both diagrams there are given three dashed curves for the residual strength of the unstiffened sheet. These are essentially Feddersen type curves as already shown in figures 27 and 28. The bottom line gives the stresses at the onset of stable crack growth, the top one gives the stresses at the onset of crack instability, and the middle one relates the residual strength G to the initial crack length. In the case of a crack in a stiffened sheet, however, the residual strength can be higher because when a crack tip approaches a stiffener, the sheet will shed some of its load on that stiffener. In the calculations there is introduced a stress intensity reduction factor:

\[C(a) = \frac{K_{\text{stiffened}}}{K_{\text{unstiffened}}} \leq 1 \]

Hence for the stiffened sheet there results:

\[K_{\text{stiffened}} = C(a) \sqrt{\pi a} \]

and the allowable panel end-stress \(\sigma_{sh} \) based on sheet failure becomes

\[\sigma_{sh} (a) = \frac{K_C}{C(a) \sqrt{\pi a}} = \frac{\sigma_c}{C(a)} > \sigma_c \]

As a consequence the load on the stiffener is increased locally. This gives rise to a stiffener load concentration factor:

\[L(a) = \frac{F_{\text{max}}}{F_{\text{remote}}} \geq 1 \]

Stiffener failure will occur if the local stiffener stress reaches the ultimate strength \(\sigma_{ult} \), i.e.

\[L(a) \cdot A_{st} \cdot \sigma_{ult} \]

where \(A_{st} \) is the stiffener cross sectional area.

Hence the allowable panel end-stress \(\sigma_{st} \) based on stiffener failure becomes

\[\sigma_{st} (a) = \frac{\sigma_{ult}}{L(a)} < \sigma_{ult} \]

In figure 34 a/b it is shown how \(\sigma_{sh} (a) \) decreases with increasing crack length and how \(\sigma_{sh} (a) \) rises above \(\sigma_{st} (a) \) as the crack grows. Three modes are depicted. Note that in the top figure \(\sigma_{sh} \) rises above \(\sigma_{st} \) whereas in the bottom figure this is not the case.

For a short crack \(2a \), in figure 34a we see how upon load increase there is first some stable crack growth, then unstable crack growth and immediate stiffener failure without further load increase. For a long crack \(2a \), there is again stable and unstable crack growth but the crack arrests as the \(\sigma_{sh} \) curve is reached for the second time. Some small load increase is again possible but soon leads to stiffener failure and final fracture. In the bottom figure both for short and for long cracks there is crack arrest, the load can increase but not beyond \(\sigma_{sh, max} \). This leads to a second burst of unstable crack growth, stiffener failure and final fracture. It should be noted that the two models can cope with plasticity effects for sheet, stiffeners, fasteners and adhesive.

The models are already able to predict fatigue crack growth, since they predict the onset of the stress intensity factor as the crack grows. Stiffener failure due to fatigue can be predicted also because a Miner type analysis can be executed on the rising stiffener load level values. Work is now going on incorporating the fatigue crack growth model CORPUS for variable amplitude loading.

12 NON-DESTRUCTIVE INSPECTION

In order to apply damage-tolerance principles in design and operation of aircraft one has to be able not only to predict crack growth, but also to detect flaws and to measure their size, so that they really arise in service. Studies of the reliability of inspection methods are necessary because they give the data upon which one has to base:

- selection of inspection techniques;
- determination of minimum detectable flaw sizes;
- prescription of inspection periods.

At the NLR statistical studies into the reliability of inspection methods were made involving two batches of specimens. These studies are described in De Graaf and De Rijk (28) and De Graaf (29).

The first batch consisted of 102 plate specimens made of two AlCuMg type aluminium alloys. They have been provided with a milled recess imitating the rabbet of an inspection porthole in a wing skin. The specimens were fatigued in three-point bending to produce cracks in the fillets. Inspection techniques used comprised eddy current, ultrasonics and penetrant. In the first two cases the inspections were conducted from the flat outer surface. The first inspection results were recorded. It was noted that with eddy current 159 cracks out of 198 were detected, with ultrasonics 123 out of 198 and with penetrant 188 out of 194.
After the first inspection the specimens were corroded for three weeks in a salt fog chamber. Subsequently they were inspected for a second time. Finally the specimens were broken to reveal the actual crack sizes. It was noted that eddy current and ultrasonic tended to underestimate the crack lengths strongly. The data were analysed statistically to determine the reliability of the inspections used. The reliability is the percentage of the detected defects of a particular size as a function of that size. The results are presented in figure 35 as the probability of detection p and its lower limit p, with 95% confidence. It is seen that p strongly affects the reliability of the techniques. The results indicate superiority of penetrant inspection before corrosion but superiority of eddy current inspection after corrosion. Selections of minimum detectable crack sizes can be based on these results. The determination of the reliability of the specimens could not be used in subsequent programs of course. The drawback was avoided with the second batch. This consisted of 201 low-alloy high-strength steel drag struts from a combat aircraft landing gear as sketched in figure 37. At one end these struts had protruding lugs used for locking the gear in the extended position. Fatigue cracks had occurred frequently in the fillets at one of the edges of these lugs. Part of the struts had been rejected because they had exceeded their safe life and others because of cracks found in periodic inspections. So there were three possible flaw sites per strut but cracks could be expected only at part of these sites. How many was not known precisely, since this depended on the inspections carried out. The estimate was updated after every inspection run. Only four struts were investigated destructively, so now there remain 197 for future investigations. These struts are offered to interested parties for checking the reliability of the techniques they use and for adding to the database developed.

An unambiguous way of lug identification was adopted and the struts were inspected successively by a number of inspectors using ultrasonics, fluorescent penetrant, fluorescent magnetic ink, magnetic rubber and eddy currents. Each inspector applied as many techniques as possible. As stated earlier the specimens but four were not tested destructively. Instead a lug was considered to be flawed if the majority of the inspections indicated this to be the case. In figure 37 the results are given in terms of percentage of missed flaws and percentage of flaws erroneously indicated as being present. Statistical analysis produced a probability of detection in the first case and a probability of recognition in the second case. In both cases the 95% confidence level was adhered to.

13 RE-ASSESSMENT OF SERVICE LIFE

The initiation and propagation of fatigue cracks can be predicted using more or less sophisticated methods. They can still be studied empirically as well. For the results of such tests to be meaningful as far as the real structure, the specimen as well as the load history should truly represent the service situation.

A specimen developed for the wing skin of the Northrop F-5A/B aircraft was described by De Jonge (5). During the first 35 years of the program the wing skin was cut-out in the root rib of the aircraft by the manufacturer. The cut-out in the root rib of the wing skin near the root rib was established as a critical location. At the NLR a specimen of the same size was fabricated and investigated for which the geometry and the stress distribution were identical to those in the wing skin. The local stress distribution in the wing was determined with the aid of resistive strain gauges and also calculated using a finite element method. The shape of the specimen had to be such that simple tensile loading would produce the same stress distribution as the complex stress distribution of the skin in the wing structure. Finite element methods were used in a trial and error approach. In order to be able to perform the fatigue tests in a machine of limited capacity the specimen thickness was scaled down to half size. Care was taken, however, to use the same material and heat treatment as in the aircraft, the same grain direction, and the same roughness and protective treatment, and even a rib flange was added, fastened down to the skin in exactly the same way as in the aircraft. Finally the calculations were verified by strain gauge measurements.

As was discussed in section 4, information on the loadings actually encountered in service had been determined on a reasonable basis. From the data compiled in 1974 a representative load spectrum was constructed, as illustrated in BASIC-MOD. This was used in comparative fatigue tests on the specimens discussed above. In the ideal case this basis of comparison would have been the load spectrum a stress analysis would give after the full-scale test by the manufacturer, figure 36. This would have enabled a straightforward correlation of the results of load and crack propagation rate. Unfortunately this spectrum was not available. Instead comparative tests were done using a block-type load spectrum that had been used by Northrop on structural details. Tests have been done also using the FULLSCALE-FLOW. Similar tests are now being done later on behalf of the Canadian Armed Forces using a loading pattern representative for Canadian usage of the CF-5 aircraft. In the latter case full-thickness specimens were tested in a large capacity fatigue machine. Tests have also been done to investigate the effects of surface treatments on fatigue life. It is often found that the usage of an aircraft and its loading experience change from year to year. For an assessment of the effects of such changes, calculations of a Load Severity Index as described in section 4 can be made. A newer approach involves the calculation of crack growth for a fictitious flaw under loadings that can be measured in service. Such calculations should be checked occasionally by testing, especially if the loading pattern deviates strongly from that originally assumed or experienced.

14 FULL-SCALE FATIGUE TEST ON THE WING OF THE FOKKER F-28 FELLOWSHIP

A detailed damage-tolerance analysis involving calculations of crack growth and residual strength, supported by tests on materials and structural details is seen as an alternative to a full-scale fatigue and residual strength test. In many cases, however, two approaches cannot fully replace one another. In such cases both approaches will often be followed to some extent. In the late sixties the NLR conducted the full-scale test on the wing structure of the Fokker F-28 Fellowship. An artist impression of the set-up, taken from Fonk (32), is presented as figure 38. Details are reported in De Jonge (31), (32) and Noback (33). The wing was surrounded by a steel framework and was hanging from it on four struts attached to the fittings of the wing-to-fuselage joints. Movement in spanwise direction was prevented by beams attached to the brackets of the landing-gear door actuators. Movement in flight direction was prevented by beams attached to the brackets of the landing gear side stays. As can be seen in figure 38, six hydraulic jacks loaded the wing from above and another six loaded it from below. Not shown are the winglet struts distributing the load in spanwise- and chordwise-direction. Mean load in flight and gust loads were applied by four jacks from above, i.e. towards the tip and near the leading edge at mid-span. Their loads were distributed by whip-ple trees. Attachment to the wing structure was by adhesive bonded pads to the skin and by strips riveted to the nose ribs. A constant downward correction load was applied by two jacks from below, i.e. towards the tip. During simulated loadings and take-offs the remaining six cylinders were in play. Two jacks from above applied upward flap loads during the approach phase. Two more loading of the wing near mid-span applied downward loads through whipple trees. Another two cylinders nearer to the wing root applied upward landing gear loads.
Load control was of the closed-loop type involving five channels since, as indicated earlier, two cylinders had to apply a constant downward load only. The control equipment comprised two pieces of apparatus called PAGE (Programmed Amplitude Generator). The program was fed in by punched tape, which was still state of the art then. The gust load program applied was akin to TWIST. There were 11 gust load levels and 10 different flights of different gust load severity. The highest load in the sequence had a probability of occurrence of once per 5000 flights. As compared to TWIST there were far less cycles per flight, however. During the test inspections for cracks were carried out daily by NLR personnel. Major inspections by Fokker personnel were carried out once per 5000 flights. Fatigue testing for 60 000 flights resulted only in some minor nuisance cracking in the wing leading edge structure at the points of load application. In order to speed up testing, the lowest load level was omitted during the next 40 000 flights. After completion of 100 000 flights artificial cracks were sawed at 10 locations. In order to avoid beneficial effects from high loads the highest load level was omitted. After flight 110 000 the lowest load level was re-introduced since it was expected to contribute to crack growth. In the meantime 10 natural cracks had been detected. After 119 000 flights 7 natural cracks were repaired and 11 new artificial cracks were made. Another 10 natural cracks were found. The fatigue test was ended after slightly more than 147 000 flights. After repair of 7 cracks the full scale load equal to limit load was applied three times. Between tests only 3 artificial cracks had been repaired. The wing fully qualified as a damage tolerant structure.

15 REFERENCES

20. Van der Linden, H.H., NLR Test Results as a Data Base to be Used in a Check of Crack Propagation Prediction Models, A CARTEUR Activity. NLR TR 79121 L, 1979.

TABLE 1

<table>
<thead>
<tr>
<th>COUNTING PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMPLE LEVEL-CROSSING COUNT METHOD</td>
</tr>
<tr>
<td>RESTRICTED LEVEL-CROSSING METHOD</td>
</tr>
<tr>
<td>SIMPLE PEAK COUNT METHOD</td>
</tr>
<tr>
<td>LEVEL-RESTRICTED PEAK COUNT METHOD</td>
</tr>
<tr>
<td>RANGE-RESTRICTED PEAK COUNT METHOD</td>
</tr>
<tr>
<td>PEAK-BETWEEN-MEAN-CROSSINGS COUNT METHOD</td>
</tr>
<tr>
<td>SIMPLE RANGE COUNT METHOD</td>
</tr>
<tr>
<td>RANGE-MEAN COUNT METHOD</td>
</tr>
<tr>
<td>RANGE-PAIR EXCEEDANCE COUNT METHOD</td>
</tr>
<tr>
<td>RANGE-PAIR-RANGE COUNT METHOD</td>
</tr>
</tbody>
</table>
Fig. 17 Summary of flaw assumptions

Fig. 18 Identification of critical areas (I):
Selection of fatigue and fracture critical parts

Fig. 19 The general appearance of a forging and the type and position of the test specimens used to evaluate engineering properties

Fig. 20 Treatments applied to Alloy DTD 5024

Fig. 21 The relationship between strength and fatigue cracking resistance for various heat treatments of the AlZnMg Alloy DTD 5024

Fig. 22 The relationship between strength and fracture toughness for various heat treatments of the AlZnMg Alloy DTD 5024
Fig. 23 Environmental effects on crack propagation rates for 2024 and 7475 with TWIST

Fig. 24 Crack propagation rates for 2024 and 7475 with FALSTAFF

Fig. 25 Environmental crack propagation rate for $S_{eq} = 70$ MN/m² in 2 mm material

Fig. 26 Various crack propagation rate curves

Fig. 27 Results of residual strength tests on unstiffened panels of different widths

Fig. 28 Fracture stress as a function of initial crack size

Fig. 29 Dimensions (mm) and detailed geometry of specimens

Fig. 30 Results of residual strength tests on panels with 9 Z-stiffeners and a central saw cut in the skin. Panel width: 540 mm. Stiffener spacing: 66 mm
Fig. 35 Reliability curves, charts of lower-bound probability of detection, p_d, of fatigue cracks of various depths in specimens. The dashed horizontal lines represent the point estimates (Q_i) in every interval, the area underneath has been shaded. The continuously drawn horizontal lines give the lower bound (y_j) of the 95% confidence interval with the available data grouped according to the optimized probability method. To produce conservative graphs both types of calculated data were considered to be applicable to the largest flaw in each interval; therefore the right hand sides of the horizontal lines were connected.

Fig. 36 Life re-assessment by comparative specimen tests

Fig. 37 Evaluation of non-destructive inspection methods

Fig. 38 Full-scale fatigue test on the wing of the FOKKER F-28 Fellowship