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DISLOCATION-THEORETICAL APPROACH TO THE BRITTLE-TO-DUCTILE
TRANSITION IN METALS

M. Pfuff ¥

The Bilby-Cottrell-Swinden model for a crack in
a ductile material will be modified by introdu-
cing a dislocation free zone at the crack tip.
A condition for the activation of dislocation
sources will be explicitly taken into account.
An energetic fracture criterion will be applied
in order to derive expressions for the plastic
work and the fracture toughness as functions of
the material parameters for the case of small
plastic zones. The temperature dependence of the
fracture toughness will be briefly discussed.

INTRODUCTION

The fundamental criterion for unstable fracture of a cracked
stressed solid is that the elastic energy stored in the specimen
and the loading system be sufficient to supply the energy needed
for the increase in the area of the crack. For the limiting elas-
tic case Griffith (1) identified that energy with the surface
free energy or ideal work of fracture y. Within linear-elastic
fracture mechanics an expression for the fracture toughness in
terms of material parameters can be derived on the basis of this
criterion. For deformable solids such as metals Orowan (2) modi-
fied the Griffith criterion by the addition of a plastic work
term vy, to y in order to take account for inelastic modes of ener-
gy disgipation during crack extension, the most important of which
is plastic deformation. Thereby it was implicated that y, is a
material parameter in the same sense as y, independent o? crack
geometry and loading configuration.

In this paper we develop a dislocation-theoretical crack
model, which will be used to justify the Orowan hypothesis for
the case of small plastic zones at the crack tip. For the well-
known dislocation crack model of Bilby, Cottrell and Swinden (3)
it can be shown that the release of elastic energy during crack
extension is totally cancelled by the work of plastic deformation,
a result which holds for any size of the plastic zone (4). As a
consequence, it is impossible to fulfill the fundamental fracture
criterion even for small plastic zones within this model. We have,
therefore, extended the BCS-model by introducing a dislocation-
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free zone at the crack tip, which has been directly observed
during in situ electron microscope experiments by Kobayashi and
Ohr (5), and, the size of which we connect with the condition for
the activation of dislocation sources. On the basis of the funda-
mental fracture criterion expressions for the plastic work y, and
the fracture toughness are derived, which turn out to be func-
tions not only of the elastic and plastic material parameters,
but also of the ideal surface energy y itself.The consideration
of the temperature dependence of the material parameters leads to
a qualitative understanding of the brittle-to-ductile transition
and the high values of the fracture toughness above the transition
temperature.

ENERGETIC CONSIDERATIONS FOR THE BCS-MODEL

For the application of an energetic fracture criterion it is
necessary to calculate the energy change 8E of the solid accom-
panying the crack extension. A continuummechanical calculation of
this energy change for the Dugdale or Bilby-Cottrell-Swinden (BCS)
model of a crack in a ductile material has been done by Yokobori
and Ichikawa (4). We will show here that their results can easily
be derived by dislocation-theoretical means. In what follows we
consider a crack in an infinite solid disc under uniform shear
stress at infinity, assuming that the results are at least quali-
tatively applicable to other loading modes. ¢ f

The distribution of crack and crystal dislocations p (x) for
an elastic-plastic crack of length 2c (Fig. 1) and plastic zone
size a-c 1is given by (3)

2(1=-v) T

=% arcosh ’ L nl-arcoshl——— + n'} (1)

m
p (x) C=X c+x

with m = (a2-c2?)/a and n = g = cos (3 ——). Here, p is the shear
modulus, v Poisson's number, t “the sheir'F stress at infinity, 1p
the critical shear stress and b the absolute value of the Burgers
vector. p(x) turns out to be a solution of the singular integral

equation
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with P(x) = 1 , x| 2 e

= rFrF, c <|x|2 a.

Using this equation it can easily be shown (6) that the
elastic energy stored in the stress field of the dislocation dis-
tribution, U, is connected with the work of the loading system on
the dislocations, W, by the equation

U=-Ww/?2. (3)

This leads to a general relation for the change of the total
elastic energy with crack length given by
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a
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a
with o (x) = bJ o (x') dx'.
X

Inserting Eq. (1) into Eq. (4) one obtains

8 (1= 1p?
§ (U+W) = T (lnsec 6 - 0 tg 0)8c (5)
with o = 2—.

F

On the other hand, the work of plastic deformation, 8T, which has
to be performed during crack extension is given by (7)

a
sT = (2tp l(“’a(%’- ax) sc (6)
(o]

with ¢ (x,c) defined in Eqg. (4). The integration of Eq. (6) leads
to the remarkable result

§ (U+W+T) = O (7)

which means that the elastic energy, which is released during the
extension of an elastic-plastic crack described by the BCS or
Dugdale model, is totally cancelled by the plastic work, and
this, independent on the size of the plastic zone. As a conse-
quence, it is not possible to fulfil a fracture criterion, since
there is no energy left to supply the energy needed for the in-
crease in the area of the crack.

MODIFIED CRACK MODEL WITH DISLOCATION-FREE ZONE

The plastic zone ahead of the crack tip arises either by activa-
tion of neighbouring Frank-Read sources or by new dislocations
being punched out of the tip of the crack into the surrounding
good crystal. The spontaneous emission of dislocations, which
has been treated in detail by Rice and Thomson (8), is possible
in high stress fields which are not shielded by neighbouring dis-
locations. We expect, therefore, this mechanism to work in dislo-
cation free solids, e.g. semiconductors, or in metallic solids
with low dislocation density. On the other hand, the Frank-Read
sources in the dislocation network of metals under normal condi-
tions are activated by rather low stresses of the order of the
critical shear stress. If we identify the critical shear stress
TF with the resistance against dislocation glide, the condition
for this activation is that the local stress at the site of the
source exceeds tp by an amount 1o which is given by

. ub
T < Eg . (8)
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Here, L is the length of a dislocation line of the source lying
between two nodes, typical values of which for the dislocation
networks of metals are of the order 1076 - 10™5 m (9). With be-
ginning external loading the Frank-Read sources just ahead of

the crack tip, where the stress is high enough, are activated to
send dislocations into the surrounding crystal. We allow for this
activation process by assuming a dislocation-free zone with a
size of the order of 2o lying between the crack tip and the plas-
tic zone and, in which the local stress is not less than tp + 1o
(Fig. 2). This assumption leads to a modification of the dis-
tribution of crack and crystal dislocations in comparison with
the BCS model which will allow to fulfil the energetic fracture
criterion and to derive an expression for the fracture toughness.
To this end, we start with an integral equation for the disloca-
tion density p (%),

a
L} L}
-a
with P(x) =t , x| 2 ¢
=T - Tp = Tge < x| <o+ g
=T - tp, c 42 < x| a,
the solution of which is given by
2(1-v)
i { e ’ ’ r
o (x) 5 1 TP 9,0 + 15(g(x,0) - glx,ce0))} (10)
where
g(x,y) = arcosh]—EL-+ n’ - arcosh‘—EL-+ n‘
ly=* 7 y+x
. a?-y? y
with m=—ay—— and n==.

Moreover, we set p(x) =0 for c¢ < |x| < c + %, to take account
for the dislocation free zone. The condition for the size of the
plastic zone turns out to be

s o] (o] o

3 T - Tp arccos - - 1, (arccos 5 — arccos ) = 0. 11
Egs. (9) = (11) reduce to the corresponding BCS equations in the
limit 25 =0. Eq. (9) is only an approximation to the exact inte-

gral equation incorporating directly the dislocation free zone
(10) . The advantage of eq. (9) lies in the fact that its solution
for p(x) may be treated analytically in order to calculate elas-

tic and plastic energies according Egs. (4) and (6). Moreover,
the activation condition (8) has been directly taken into account,
and we suppose the error to be small by setting p(x) = O within

the dislocation free zone.

In what follows, we restrict ourselves to the case of small
plastic zones, i.e. a-c <<c or T << Tp, which is interesting
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for the calculation of a fracture toughness. On the other hand,
the size of the plastic zone must still be large compared with 2,
since otherwise the concept of a continuous density of disloca-
tions makes no sense. Solving Egs. (4) and (6) for the change of
the elastic and plastic energies during crack extension and taking
~into account the terms of lowest order in T/TF only, one obtains

S(U+W+T) =

4(1-v) 2472 T 2
oo it O o g By gy (B8 T ga, (12)
U e lo ZTF

With the aid of the fracture criterion
S(U+W+T + 4yéc) =0 (13)

Eq. (12) leads to expressions for the fracture toughness, KC =
tc/mc, and for the effective work of fracture, yeege = v *+ Yo -

according to Orowan's hypothesis. The results are

" VZE . TuY :
K, = 1, =2 exp (57— - ) (14)
c Fynm 2(1 v)TF(TF+r°)Eo
and '
" 2(1—\:)201; Py
eff = exp (== ). (15)
T u (§] v)TF(TF+‘r°)2o

Oon the basis of the known temperature dependence of the material
parameters u, y, tf, t_ and & _, these results make it possible to
discuss the temperature depenaence of Ko or yefg above the tran-
sition temperature T_. Since for metals there is only a weak tem-
perature dependence for u, y and %,, and 1, is small compared
with tp, the change of K, with temperature is mainly determined
by the temperature behaviour of tp.

Within our model there is a relation between the transition
temperature T, and the size of the dislocation-free zone, £,.
Under the conaition that the local stress in this zone is not
less than «tp + T, one obtains in the limit of disappearing
plastic zone for which a-c is of the order ¢,

K

. _ “co
R (16)
o

Here K, is the brittle fracture toughness of the same material
below T, given by

40



PROCEEDINGS OF THE 4th E.C.F. CONFERENCE

K = LT:‘\% (17)

co

Typical values for Keo and tp(T,) confirm the order of magni-
tude for 2, to be 107% - 10=5"m. Connecting Eq. (16) with

(14) one obtains an equation for the ratio K /Keo which, to demon-
strate the results, is shown in Fig. 3 togetﬁer with the critical
shear stress tp for Fe single crystals (11) as a function of tem-
perature. Thereby, the material parameters have been chosen to

be w =6,92-10% MPa, vy = 1,975 J/m?, v = 0,291 and L,% 1075 m.
The results clearly demonstrate the strong enhancement of Ko with
beginning plastic deformation. For deep temperatures the values
of K. approximate the brittle fracture toughness value, Kqqo,the
transition temperature lying at about 150 K. The limitations of
the model, however, lead to a too rapid rise of K. with increasing
temperature. Hardening effects, on the other side, reduce the
plastic deformation, and thus should lower the values of Ks above
the transition point.

SYMBOLS USED

b = absolute value of the Burgers vector

2, = size of the dislocation-free zone

Ko = fracture toughness

Kco = fracture toughness below the transition temperature
U = elastic energy stored in the specimen

w = elastic energy of the loading system

To = transition temperature

Y = surface free energy

Yp = critical plastic work

Yoff = effective work of fracture

T = plastic work

u = shear modulus

v = Poisson's number

T = shear stress

Tp = critical shear stress

T = stress, necessary to activate dislocation sources
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Figure 3 Critical shear stress and fracture tough-
ness according to Eqg. (14) for Fe single crystals
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