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ABSTRACT

The well-known use of G-R curves in terms of linear elastic
fracture mechanics is re-examined in terms of recent
developments of J-R curves in plasticity using the simple
argument that the energy release rate available, I, mustbe
equal to or greater than the total work dissipation rate,
dw/Bda. The circumstances when this reduces to or dif-
fers from the well-known tangency condition between G or

J and the R-curve are stated, and the relationship between
this condition and an effective toughness of component that
decreases with crack growth is discussed. Some estimates
of I in contained yield are given. It is found that I=G
for bending configurations but I=J for tension cases.

The use of G corrected for plastic zone size as an approx-—
imation to J in contained yield is examined in the light

of some existing residual strength data for wing panels.
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INTRODUCTION

The use of a rising curve of crack growth resistance versus crack growth, the
so-called R-curve, came into prominence following several ASTM bulletins reporting
on the work of a committee on the "Fracture Testing of High-strength Sheet
Material" in the late 1950's, culminating in the well-known paper by Krafft et al,
(1961) . The concept has since been explored and firmly established in many
papers, of which the works of Broek (1966), Hayer and McCabe (1972), Creager &

Liu (1974) and Novak (1976) are representative of studies in both light alloys

and thin section steel where the failure mode is by ductile tearing that is
initially stable and amenable to description by lefm.

Recently, considerable interest has been shown in the R-curve concept expressed in
terms of either COD (Tanaka & Harrison, 1978) or J (Garwood et al, 1978) for des-
cribing the ductile tearing in the presence of extensive plasticity. Particular
interest has attached to the prediction of unstable ductile tearing (Paris et al,
1979), (Turner, 1979) in the absence of a change in micro-mode of behaviour.

In the present paper the earlier use of R-curves expressed in terms of either G

or K via lefm for problems where the net section stress is below yield is re-
examined in the light of the viewpoint engendered by the studies of R-curves
derived in conditions of extensive yield and expressed in terms of J.

USE OF J-R CURVES OR G-R CURVES

Two rather separate cases exist for the use of J in the analysis of stable crack
growth via material resistance R-curves. One is the development of R-curves ex-
pressed in terms of J from test pieces that experience extensive yielding with
the intention of predicting unstable crack growth in components that experience a
significant degree of yield. Such work has been explored recently by Paris et al,
(1979L Garwood et al,(l979),and others and was summarised by Turner (1979b). Yet
more recent work follows this line of attack, for example, Shih et al (1979), Gar-
wood (1979), Paris et al (1979), Turner (1979c) and a number of other studies.
This use of J for R-curves in extensive plasticity is not further discussed here,
except in so far as the viewpoints generated throw light on the use of R-curves
in contained yield. The second use of J is indeed in contained yield. As noted
above, this type of problem has been attacked in terms of lefm by Krafft et al
(1961) and many laterworkers, as summarised for example, in ASTM (1973) and more
recently by Turner (1979d). 1In a recent sequence of papers, Wilhem et al (1977),
Ratwani & Wilhem (1978), Ratwani & Wilhem (1979), suggested that a J treatment
was desirable even for certain problems where nominal stress o and net section
stress 0 were less than ¢ . It should be remarked that these papers deal with
the resigual strength of txin skin structures, with rivetted or bonded stringers,
representative of aircraft wing panels. These require several complex steps of
analysis, but it is only the plasticity aspect of the R-curve treatment that is
discussed here.

It is generally accepted that G corrected for plasticity by use of an apparent
crack length based on either the Irwin plastic zone correction factor or perhaps
an equivalent compliance is an adequate representation of the degree of plastici-
ty for perhaps 20% or even more in excess of the lefm value. 1In so far as J has
emerged as an acceptable single parameter model of the intensity of crack tip
deformation beyond the lefm range, then denoting the corrected value of G by Gp’
it is supposed that Gp = Jy 1in contained yield, Fig. 1 B, C.

There is considerable axperimental evidence that this is reasonably so using the

Irwin term r = (K/o_) /2m (for plane stress) for intermediate levels of stress.
Clearly, for“stresses approaching yield Gp <J, greatly so once net section yield
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is reached, as for example, Fig.l. (A)
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Fig.l. Variation of J with extent of yielding.

In early support for the COD model Burdekin g Stone (1966) also pointed out the
similarity of the Irwin correction to the expansion of the Dugdale ln secant
term. For an infinite plate, the differences between K, K, (corrgcted by the
Irwin factor) and K, (inferred from the Dugdale model by taking K = EG and G =
0 6 where § is the Dugdale term 8 = (80 _a/TE) ln sec (mo/20 ) are shown Table 1.
For this configuration there is an error of 6% if plasticity is neglected for

a stress level of o/¢_ = 0.5 and an error (relative to the Dugdale solution) of
6% if the Irwin term is accepted for a stress level of 0/0Y = 0.8.

TABLE 1. Effect of plasticity according to the Irwin
correction to lefm for the Dugdale model.

/o, KP/K gD/K (KD—KP)/Kn
0.5 1.06 1.06 1%
0.6 1.09 1.09 1%
0.7 1.12 1.14 2%
0.8 1:15 1422 6%
0.9 1.19 1.36 12%

In the writer's view there thus seems little need for the use of J for stress
levels below yield such that the crack tip plasticity is still contained by an
outer elastic region, although it is admittedly difficult to give explicit limits
for that statement other than as a value for J/G or the like.

In the studies just mentioned by Wilhem and others, the R-curve was indeed
derived by elastic methods corrected for plastic zone size, generally according
to the procedure recommended in ASTM (1973Db) (now 1978) using a crack line wedge
loaded (CLWL) test piece.

Two separate elastic finite element analyses of the CLWL piece were made to give
K and J (elastic). In deriving R-curves by both methods an allowance was made
for plasticity by determining the effect%ve crack length but both analyses are
elastic and thus inherently related by K~ = EG = EJ(elastic). The computed
calibration for K was several per cent. lower than that quoted in ASTM (1973b)
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here denoted K. . The J value, when translated to K as /EJ, here called K_,
was several peYr cent lower again. These computational differences cloud %he
issue and make certain definition of the R-curves impossible. Two main

analyses were made for the treatment of the crack in the test panels, each con-

ducted for two crack lengths, of which only the shorter is followed here. One

was an elastic finite element solution to find K, including a treatment judged

best suited to the rivetted reinforcing stringers. The second was a Dugdale type

elastic-plastic computation,based on the Hayes & Williams (1972) procedure, with
few preliminary Prandtl-Reuss computations in support, again including (the

same) treatment of the rivetted stringer joints. A typical Dugdale computation
over—-estimates the Prandtl-Reuss result by 4% at o/0_ = 0.5 and under-estimates
it by almost the same amount at o/o. = 0.82, the maximum stress level considered.

This very reasonable agreement is tdken to justify use of the Dugdale model in
the light of the saving of computations.

predictions of unstable crack growth are made in two ways, one appearing to be
satisfactory, the other not. The way that appeared satisfactory was the use of
the R-curve defined by YJ (elastic) with plastic zone correction and with the
driving force computed in terms of Y3 from the Dugdale computations. For one
particular case this analysis showed arrest at the reinforcing stringer was
feasible up to U/GY < 0.75.

The second prediction was made in terms of the R-curve defined by K_ with the
driving force computed in terms of K not corrected for effect of plastic zone
size. This prediction showed behaviour always stable (up to 0/0Y = 0.82) by a
large margin. It is not here disputed (beyond the discrepancies in the various
computed values already noted) that the J procedure is adequate. Indeed, the
agreement with experiment at about 6% difference for several test panels is
remarkably close. However, it is argued here that the K procedure can also be
adequate for this problem if one datum R-curve is used (i.e. the discrepancies
between the various calibrations eliminated whichever mayin fact be correct) and
the computed value of the applied K corrected for size of plastic zone to become
K . The predictions of instability and arrest are then quite similar to the
aBthor's J method. As an arbitrary choice the R-curve defined by J (elastic) is
used but expressed in terms of K as R(K_). As shown Fig.2, this falls some 20%
below the R(K_) curve for reasons that dre primarily attributable to the
differences in elastic calibration since plastic methods of analysis were not
used for the test piece. The applied value of K given in the data is here cor-
rected for the size of plastic zone quite approximately by use of the correcting
factor for a wide plate since a value more appropriate to a skin and stringer
configuration is not known.

As seen, Fig.2, arrest might occur at the reinforcing stringer for a stress level
up to about 0.78 o_. This is clearly comparable to the prediction by the authors
of 0.750_ using the Dugdale J computations, although agreement between some data
in the cilculations even at elastic stress levels is still affected by a number
of uncertainties that cannot be resolved in the absence of an agreed reference
solution.

Resolution of the quite major differences between the original predictions in
terms of K and J raises the question of whether there should be any difference
between an elastic and elasto-plastic prediction in contained yield if the former
is corrected for size of plastic zone. This question is discussed in the remain-
der of the paper in the light of the recent development of J-R curves.
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Fig.2. Comparison of driving force and R-curves derived by different
methods in a L stiffened panel (after Wilhem & co-workers).

R-CURVES AS A MEASURE OF WORK DISSIPATION

It is now generally agreed that as discussed at some length in Turner (1979Db)
plasticity is a measure of the total work dissipation rate, some of which can be
described, conceptually, as surface energy and the remainder of which is general
plastic work, not necessarily or even primarily, closely adjacent to the fracture
plane. It is arguable whether the two terms can be disentangled. When the plas-
ticity is extensive, it is clearly dependent on the configuration of the test
piece. One interpretation of the J-R curve is that, when suitably expressed, it
provides a measure of plastic dissipation that has been normalised with respect
to both size and shape of the component and this defines a material property, the
toughness against tearing. The terms that in principle allow the normalisation
are those that relate J or in lefm, G, to the work done, w,

G =ng, w/Bb Egn.l
T = no w/Bb Eqn.2

where B is thickness, b is the ligament (W-a) and n a shape dependent term that
in elasticity can be calculated from lefm shape factor and in gross plasticity
can be estimated from the variation of limit load with crack growth (Turner,
1979b) . From the conventional definitions of J (or G) in terms of work rate, it
follows that amongst several possible definitions of n one is

n=- 1_)_ 2)_vlr_ Eqgn.3
w da'qg
where l implies constant displacement. The extent to which these concepts

are sufffcient to describe actual tearing behaviour for a variety of configura-
tions, stress states and degrees of inhomogeneity is uncertain, since it is still
fiercely argued where any one parameter, be it J, COD or other, can provide an
adequate description, even of the initiation of fracture. Nevertheless, the

FAF.—L*
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picture of J-R curves as a normalised work rate term provides a conceptual model
that appears to contain all the correct features in so far as any one parameter
model can do so and should be of most relevance as J -+ G and lefm remains
adequate. When in lefm R-curves are expressed in terms of K it is implied that
fracture is being described by a characterising parameter for which the single
term K is sufficient to define the severity or magnitude. Because in strict lefm
there is the well-known relationships between characterising parameter K and
energy rate G 2

K° = E'G Eqn.4

where E' is the effective modulus (E' = E in plane stress; E' = E/(l-vz) in plane
strain where Vv is Poisson's Ratio) then a balance of energy rate is implied.
However, in the non-linear case the identity between characterising parameter and
energy rate is lost unless a strict interpretation is put on the J model which is
thereby restricted to non-linear elastic (nle) behaviour. For realistic behav-
iour, the question arises whether, as plasticity is no longer negligible, the
characterising or energetic argument should be followed and how different they
may be. As a datum value against which to compare other estimates in plasticity,
J is taken despite the admitted uncertainty over its use as a definitive criterion
for fracture in plasticity. A corrected value of G, here written Gp'

G = G(Y,o0,(a +r)) Egn.5
p b

is used in terms of the Irwin plastic zone correction, where Y = f(a + r )/W and
(in plane stress) 5 p
rp = EG/Z'ncvY 6.6
If the correction is negligible, then the distinction between characterising and
energetic arguments is irrelevant. If net section yield occursJ » G_ so that a
plasticity treatment as referenced above is necessary. The present afscussion
centres on the region of significant but contained yield where J Z G . Precise
definition cannot be given to the stress level or extent of yieldingpwhere plas-
ticity ceases to be "contained" and becomes "uncontained" since the effect depends
upon configuration and the degree of difference between J and G_ that is tolerable
for the purpose but broadly it is the "elbow" of the load-defleBtion diagram where
the extent of plastic zone may be large in relation to the crack length and com-
parable to the ligament whilst not yet completely crossing it.

In discussing characterising or energetic pictures of fracture the distinction
must be made between the initiation of fracture and subsequent slow crack growth
or unstable behaviour. Since fracture from a pre-existing sharp defect can start
without unstable growth, even in conditions of rigorous lefm, e.g. in a wedge
loaded situation, then reaching a certain severity of crack tip stress field or
deformation must be a sufficient criterion for onset of separation. There is no
requirement that the energy for separation be supplied from internal sources of
strain energy since further external work will be done to extend the fracture and
indeed, increase the stored strain energy still further.

In rigorous lefm the rate of work absorption with crack growth is equal to the
rate of energy release rate with crack growth, i.e. BGda. With non-linear
material this equality is no longer so, except for non-linear elastic behaviour
where both terms are J. Thus, with plasticity as the source of the non-linearity
the work absorption rate that defines the R-curves is closely J (in so far as any
single term can describe it) whereas the energy release rate that drives an
instability is not J.

There are thus two quite separate questions. When is J (or other term) a suitable
measure of work dissipation rate, characterising parameter, or both, and what is
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the mpeasure of elastic energy release rate in an elastic-plastic-elastic (i.e.
elastic plastic loading, linear elastic unloading) material?

The relevance of J (and thus G as approximation thereto for contained yield) to
work absorption rate is exact Por 'total' or 'deformation' theory plasticity.

In such behaviour the ratio of the stress components (i.e.the triaxiality) is
independent of the degree of plasticity for proportional loading and fixed boun-
dary conditions (Turner et al, 1980) and it is generally supposed, with some
computational evidence in support but no absolute proof, that the crack tip stress
ratios remain sufficiently constant even for incremental material whilst yield is
contained. In extensive yield the converse, that the triaxiality is a function

of configuration and degree of yielding, is well-known in plane strain with
minimal hardening (McClintock, 1965) but in plane stress the variation of the
stress ratios must be limited since o is maintained zero and only the ratio

a x: 0. (transverse to axial) can altgr. However, extensive yield is outside the
regime of treatment by G_ so that the present argument is simply that in contained
yield where J = G_, eithgr term is an adequate measure of absorption rate. Even
with no unloading®J is strictly a characterising parameter only for 'total'

theory plasticity and proportional volumetric strain ratio (as in the nle HRR
model) since otherwise at least two terms, intensity and triaxiality, are re-
quired to describe the stress state. The adequacy of J as these conditions are
lost is contentious, and must be determined experimentally for the material and
circumstances in question.

Even if J is accepted as the correct or at least an adequate measure of work
dissipation rate, it must still be asked whether the R-curve found with extensive
plasticity can be related to the elastic R-curve. Studies by Garwood et al (1978)
show conclusively that the R-curve has two components, one due to shear lip for-
mation and one due to general plasticity that remains even when shear lip is
eliminated by deep side grooves. This plasticity effect clearly disappears as
lefm is approached and in K. testing it is the shear lip component that causes the
rising R-curve. It is not at all clear under what conditions the shear lip work
rate will be the same in elastic or plastic tests since the size of shear lip is
expected to be both thickness and configuration dependent. Thus, acceptance of a
J-R curve for use in contained yield seems highly questionable unless the R-curve
was obtained in contained yield (as indeed was the case by Wilhem et al) in which
case any distinction between a G-R curve (with plastic zone correction) and a

J-R curve is within the uncertainties of present analyses and understanding.

The energy release rate in the presence of plasticity was defined (Turner, 1979a)
as I, Fig.3, where
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If deformation theory plasticity is used, then, within the restrictions already
mentioned of proportional loading and fixed boundary conditions, during loading
the behaviour is identical to non-linear elastic and n is independent of the
extent of deformation and in particular n_ = n .. 1In that case I = G. If defor-
mation theory plasticity followed by linear elastic unloading (called ideal
elastic-plastic-elastic (ideal epe) behaviour were followed, then the release rate
would still be G even with gross plasticity. In reality, with incremental
behaviour, in some configurations triaxality is maintained (e. g. deep notch bend-
ing in plane strain) in which case n = n and I=G, whereas in others (e.g.
centre cracked tension) triaxality i8 los% as yield becomes uncontained, n > n
and I > G. The upper limit of I is complete recovery of energy, i.e. I &

As a guide the statement of G 5§ I<J is made but some qualifications to that
statement may be necessary. For most purposes the lower bound is I » G, although
there may be certain cases where I < G, for example rigid plastic or perhaps
velocity damping type materials.

el

In so far as the loose approximation J = G is adequate in contained yield, then
the distinction between G and J would only be significant in gross yield, where

J >> G. However, if the difference between G and G is deemed significant, then
the release rate I is not presently known within thePlimits G €I <G . The
limit I = G is exact for so-called ideal epe behaviour. The limit I =P7 is exact
for nle behaviour which is not physically relevant to metals. The condition

I » J is met where crack tip triaxiality (or indeed, biaxiality, for plane stress)
is lost as plasticity spreads. It is well-known that the shape of plastic zone
differs from one test configuration to another (Larsson & Carlsson, 1973) but
there are no solutions for the stress state in the contained yield regime known
to the writer other than computational data. If the plastic zone is ver well
contained by the outer elastic field, it may be though that biaxiality is main-
tained. Once a ssy model ceases to be adequate and the effect of lateral boun-
daries is felt, no doubt the result depends on type of loading and degree of
hardening.

Applying these arguments to G-R curves viewed as a balance of energy rate, it
follows that the ordinate of the R-curve should be G , since that is the best
measure of the energy dissipation; the abscissa shoflld be Aa (actual) rather
than Aa + r since J (to which G_ approximates) is a function of the actual crack
length. ThE ordinate of the eneggy release rate, excess of which causes in-
stability, should strictly be I, for which in well-contained yield, no explicit
formula is known and for which G might be a better approximation than G , perhaps
according to configuration. If, on the other hand, the G-R curves are ¥iewed as
a balance of characterising severities, albeit expressed in the G notation rather
than K, then G is the better estimate of intensity for both the material behavi-
our and the apBlled loading. It is not self-evident what the abscissa should be.
Although Aa + r seems commonly favoured, the writer inclines to the view that

G is still being used as an estimate of J which is a function of the actual
cPack length so that Aa (actual) again is the more logical abscissa.

CONDITIONS FOR INSTABILITY

The instability in lefm is usually expressed as the tangency condition

ar] ] (applied) > dR (material) Egn.8
da GEY
where, here, the applied condition is taken at constant load Q. Analysis at
fixed displacement, is also possible using (ag/aaﬂ By differentiating Eqgn.l

the applied term can be re-expressed as

gg_l = 9»(fl(n) + n) Egn.9%a
da b



Use of the R-Curve for Design 323

or gg
da =
q

G (fl(ﬂ) - Egn.9b

where f. (n) = 1 + (b/n) (dn/da). Obviously2tBe expression for (BG/Ba)Q is the
same as that found by differentiating EG = Y 0 a; i.e.
9G] = 26 ay + G Eqn.9c
da Y da a
The n notation is preferred for ease of relating B/Sal to B/Bal and for relating
3G to 3J as plasticity spreads. The instability stategent is

I > dw/Bda Egn.lO0a

whichh by differentiating Egn. 2 gives

T >b@d - J(E ()] Eqn.10b
noda b

For lefm Egn.l is used and then J =G and ne

is implied instead of n_ . For
rigorous lefm this is the same as 2

1

3G/da (applied) > drR/da (mat) where R is G(mat) Egn.ll
For truly nle material I = J and Eqn.lO is the same as

35J/3a (applied) > drR/da(mat) where R is J(mat) Eqn.12
For ideal epe material I > G(mat), Egn.lO is the same as

3J/9a (applied) - (n/b) (J-G) > dR/da(mat)

where R is J(mat) Eqn.13

With real (incremental) epe material

3J/5a (applied) - (n/b) (J-I) > dr/da(mat)
where R is J(mat) Eqgn.1l4

For I -~ G this case reduces to Egn.l13 and for I - J it reduces to Egn.1l2.

An alternative viewpoint is to treat the right hand side of Egn.lOb as an
effective toughness Re (Turner, 1979c¢).

££f
R =b ' fadR - R £ (M} Egn.l5
eff n e b 1
where in general R implies J(mat) and n implies no. For lefm R = Gmat and
n=mn I The term R £ obviously reduces with Crack growth corresponding to the
reduction in slope of %ﬁe R-curve. The term can be treated as an effective

toughness of the component, influenced both by the material R-curve, which at
least conceptually is a material property, and the size and shape factors, b and
n that depend on the component. This concept corresponds to the reducing R-
curve discussed in the pre-Krafft, Sullivan & Boyle (1961) literature but gener-
ally thereafter dropped in favour of the "material only" R-curve effect. Written
in this form, for lefm, (instead of Egn.ll)

G >R, (withR = G(mat)) Egn.l6a
and for true nle material instead of Egn.lZ

J > Re (with R Egn.l6b

= )
£f£ J(mat)
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For ideal epe material (instead of Egn.l3) and real (incremental) material
(instead of Egn.l14)

I> R (with R = J(mat) - Eqn.léc
The value of I will differ in the last two cases according to the value of n_/n
in Egn.7, since n /n = 1 for ideal epe. Numerical evaluation of Eqns.l6,a,b,g,

will of course gige %ﬁe same result for instability as Eqns.l11-14.

The differences between Eqgns.12 & 13a,b,become large as dJ/da becomes small, i.e.
after substantial crack growth.

In the use of J-R curves Hutchinson & Paris (1979) denote small crack growth by
w>>1 where w is defined or w = (b/J) (dJ/da) in order that a characterising J

field is retained at the crack tip. 1In strict lefm or nle material the restriction
is not required, since only the derivative term appears. In contained yield
treated by lefm, the difference between Egn.14 and Egn.ll or 12 might be signifi-
cant, since the absolute amount of crack growth prior to instability tends to be
larger in relation to the thickness and the slepe of the R-curve much reduced

from its initial value.

Treating R as J(mat) 6 a more general statement of small amounts of growth is seen
from Egn.1l5 to be
w>> fl (n) Egn.1l7

but for a number of deep notch configurations £ (n) = 1 so that the Hutchinson &
Paris (1979) conditions i§ recovered. If Eqn.i7 is satisfied and all terms in
Egn.10 multiplied by E/o then, of course, all the cases can be expressed in
terms of the T or tearing thodulus notation of Paris et al (1979). It must be
realised that as crack growth continues, so T reduces with dR/da. The value of
T (applied) would be nI/b, the precise value of which for any configuration
depends upon the stress strain law (linear elastic, nle, ideal epe, incremental)
chosen.

SOME ESTIMATES OF I IN CONTAINED YTELD

If the difference between G and J is not important, then there is no further
argument to be made over the value of I. If- it is judged significant then the
value of I is also important. There is no rigorous way known to the writer of
evaluating I for real elastic-plastic materials, so that an uncertainty exists
over the value of the driving force curve, and hence of its tangency point with
the material resistance curve. As gross yield is approached there is some evi-
dence that I = G (or at best, I is closer to G than to J) for configuration with
high constraint, since in Eqn.7, N, = Ngy- On the other hand for a low constraint
configuration, such as centre cracked tension, n_ > n by an amount such that
I>J, which in extensive yield may be much greatef thaflG. The extent to which
these trends can be traced back into contained yield or to which contained yield is

well modelled by the high constraint Prandtl field (for non-hardening material in
plane strain) for all boundary configurations is not clear. Some computed data
for n /n in the contained yield region are shown, Fig.1, and Fig.4 the
value T/Gelnferred from Egn.7b, and the estimate of G /G. It appears'from this
rather scanty evidence that the ratios n_/n and henPe I/G, depend, as expected,
on the configuration as well as the extent S% plasticity.

In particular, for deep notch three-point bending, I is closely G, whereas in
centre-cracked tension, I > G by subtantial amounts for a deformation about that
for yield of the uncracked body. For non-hardening behaviour or deep notches,
where the deformation at yield is concentrated at the notch, this effect is quite
marked. With shallower notches and some work hardening sufficient to spread the
yield away from the notch, the increase of I over G is much less marked.
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With some work hardening or shallower notches to cause yield to the front face
in-bending, the near constancy of I/G to unity might be expected to be less close-
ly maintained. In the present data it is noted that Gy is not as close an esti-
mate of J as might have been expected. For example, with J/G = 1.076 (Fig.1,B),
G /G =1.180 at r /a = .053 in bending. There is thus a difference of 8% of G

of 50% of (G -G)/B. In short, G appears to over-estimate J for moderate stress
levels, but,pof course, under-estimate it for high stress levels as gross yield
occurs. On the present data there seems little point in preferring G_ rather
than G, since J is near the mean value of G and G_.It cannot be demonBtrated here
whether or not this discrepancy between G_ and J gs because of the obvious approx-—
imate nature of the Irwin correction factdr, or because of inaccuracy in the
computation of J. The discrepancy netween G and J is comparable for both ten-
sion and bending data here and data from an gntirely separate source would be
required to resolve that question. It is generally known that in gross plas-
ticity n = n 1 = 2 for deep notch bending, whereas nk.n in tension. Thus,

the differen% trends in n_/n and in I/G are supported %y analytical (non-
computed) data, albeit in the gross rather than contained yield situation.

It is possible to estimate I/G in contained yield from the plastic zone cor-
rection and other data (see Appendix). This estimate follows the trend noted
that I/G increases for tension but not for bending. However, it appears to
over-estimate both effects (i.e. I/G too large in tension; I/G too small in
bending) in relation to the values of Fig.4 estimated from the computations,
corresponding to the difference between G and J already noted. It is perhaps
unreasonable to expect the relatively small differences in question to be
predicted with close accuracy, but conversely, someestimate of the accuracy of
both the plastic zone correction procedure and of the compuational methods seems
essential if differences from lefm are to be taken account of at all.

CONCLUSION

Tt is concluded here that the elastic energy release rate in the presence of
plasticity, I, is strictly neither G nor J but depends upon the configuration
for real plasticity materials. The value I/G, tends to rise above unity for
tension cases by an amount comparable to J/G, whereas for bending cases it does
not. The effect is attributed to the partial loss of constraint for incre-
mental plasticity material in the former but maintenance of it in the latter.

If the constraint (triaxiality ratios) were constant with degree of deformation,
then I = J, for perfect nle behaviour or I = G , for ideal epe behaviour, and the
effects of configuration under discussion would not occur. In so far as the
computations of J/G and lefm value corrected for the size of plastic zone, G /G,
differ in contained yield by some 5% - 10%, it is not possible to say with
assurance which value is the more nearly correct within contained yield and a
corresponding uncertainty must remain over the numerical prediction of unstable
crack growth when viewed as a balance of energy rates.

1/G ____ or G /G —==- 1/6 w.— or G /G ----
2 2

.4 Bending; a/W=0.5 7 ~a Tension; a/W = 0.1
’// .
ol - = - 1.6
! | | | I | L1 L l | | L L | |
L .2 s3 o .1 .3 +5 .7
- =
a/ v O/uY

Fig.4. Estimates of I/G in contained yield; plane stress
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APPENDIX

If with a small degree of yielding but no actual crack growth a slightly non-
linear deflection diagram is obtained, Fig.5, then the following relationships
can be written

Non-linear ORDG = w ; T = No1 w/Bb
Triangle OAE = o1’ G = nel wel/Bb
Triangle ~ OBF = W J=G =7 w_ /Bb
eq eq el eq
Triangle OoDG = w_o; G =n w /Bb (=J)
p p P p
where ODG refers to an effective crack length a + r (with r defined by Egn.6)
for which it is supposed G = J at least in intentiBn) and nT is n for crack
length a + r . The actual load at A or D is denoted Q. s e end®Sf the

substantiall§ linear region is denoted Q_. The ratio Q _/Q (<1) is denoted a

and can be estimated for any load deflec%ion record. C%ea%ly, the true value

of w is slightly greater than the linear approximation to ORDG (i.e. RD linear
instead of curved). Thus,

w > triangle ORH + trapezium H RDG

.. w/B ={GDb (a+l)/n) - Gb a/n Eqn.18
[ PP p el
where b = a - r
p b
. = (o + b b) - aG/G Eqn.19
No/Mep = 1/ Ll + 1) (n, /N ) - oG/ p] an
If a+ rp is a slightly longer crack a + 8a, and np 1s gy at (a + 8a)
= = Egn.20
then (n el/b)a (lo/nel)a1 +8a) 1 (fl(n))da/b an

and n_ (i.e. the value of n in contained yield treated by the lefm plastic
zone correction) is nel at (a + rp)

- . contained yield no/nel <1 —a(l-(G/Gp)) + fl(n)(a+1)rp/b Egn.21
Al = -— -
so I/G (2no/nel) 1 (Egn.7b)

In contained yield I/G £ 1 - 20 (1 - (G/GD)) + 2fl(n)(u+l)rp/b Egn.22

Load A//g’g2
Q — 2 L~
- QR R
o H B Flg Displacement

Fig.5. A slightly non-linear load-deflection diagram for contained yield
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