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ABSTRACT

For components of the primary coolant system of LMFBR's the demon-
stration of integrity against anticipated single peak loads is
postulated. Within correlated programs experiments with cracked
structures have been carried out yielding overall limit strains
between 10 % and 15 %. The purpose of the analysis is the numerical
simulation of structures strained to such levels. Load versus
displacement-diagrams and load versus J-diagrams up to the limit
load are calculated. By this way the influence of geometric para-
meters may be assessed in the post yield region. It is proposed to
use such calculations to correlate experiments carried out with
small specimens to experiments simulating the true dimensions of the
design structure.
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INTRODUCTION

The application of the finite element method is meanwhile well
established within fracture mechanics. In this paper the calculations
are carried out upto the limit load, as would be desirable for pre-
dicting the behaviour of cracked structures against single over-
loads. The fact that stable crack growth is onset before reaching

a critical value of Jc or the limit load, is taken into account by
assuming a crack size that is properly enlarged against the

initial crack that may have passed the quality control screening.
Another limitation of the common first order formulation may lie

in the gross strain reached in the X6CrNi1811 weldment, which goes
well beyond 15 %. Therefore a special material law was used, which

- partly - compensates for the failures of first order calculations.
By comparing the results with forthcoming calculations which include
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all geometric nonlinearities, it is intended to define a limit of
strain, up to which the first order formulation will suffice.

FINITE ELEMENT REPRESENTATION

The structures chosen for the first calculations were plates

with the dimensions 40 x 80 mm and 8.8 x 17.6 mm, respectively, with
central cracks of 1/10th of the width. The former are great enough

to simulate portions of the original vessel. The FE-calculations are
carried out with the computer code ADINA, that is the structure is
decomposed in 8-node-isoparametric elements. The crack tip is modelled
with triangular quarterpoint elements, as described by Barsoum
(1977) . Within the crack tip elements 3 x 3 integration points are
used, and 2 x 2 points in the remaining mesh. The limit of the

linear theory is defined by the start of plasticity in one of the
crack tip element central integration points. The crack tip nodes

are constrained to one common degree of freedom for the first - ela-
stic - load step and thereafter allowed to move independently for

the modelling of the appropriate singularity of the displacement
field. The mesh has some 480 degrees of freedom, and the ratio of the
size of the crack tip elements to the crack size is held constant to
1/20 independent of crack size.

Figure 1 shows the configuration of the elements surrounding the
crack tip. The total width shown equals one fourth of the total
crack length.
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Fig. 1 Crack tip finite element configuration
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METHOD OF EVALUATION

The elastic step of each calculation was verified by computing the
stress intensity factor K using the stresses and displacements in

the crack plane. This is compared with the theoretical K according
for instance to Tada, Paris, and Irwin (1973) - and to the K value
as computed by means of the J-Integral. See Fig. 2 for one example.

A K [N/mm- ymm ]

70+ \
Kid)

-

—_— __”-—K
K(1) =60 th

Kiv) ‘f/’,;a"

1
s

1 L I i -

-02 -01 +0.1 +02 T4

Fig. 2 K(v), K(J), K(6) for a load corresponding
to the limit of linear theory

The J-Integral is evaluated in the same manner as was shown to be
appropriate for higher order elements by de Lorenzi (1978). Thus,
for a first order F-E-solution:
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where i goes over the GauB-points that define the integration path
and the H(i) are the appropriate weights. W is the energy density,
6(i,j), u(i), x(i) are the components of stress, displacement and
location. In evaluating the differential transforms Mx, My full
credit was taken from the fact that - besides the crack tip - only
elements with straight sides and midpoint side nodes are used. Then,
for instance, if the path is parallel to the local 'q—axis, Mx is
simply given by:

x(1)+x(4)
2

Mx = 2 - x@ExB)) 4 3oy (x (1) -x(2)4x(3)-x(4)  (2)

where the index denotes the four orner-nodes. The restriction does
not affect the versatility, since it was shown by Nagtegaal, Parks
and Rice (1974) that it is no trivial problem for the finite element-
method to cope with the nearly incompressible plastic deformation.
The 8-noded isoparametric element proved suitable only if

restricted to straight sides.

A somewhat different scheme than that given by de Lorenzi (1978)
was used for the integration around corners. The integralji ds,

as outlined in Fig. 3, is computed as the weighted mean of the
adjacent path integrals:

gjds = W(1) ifds + W(2) gfds + W(3) gfds (3)

A

Fig. 3 Decomposition of the path integral
around a corner
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The weights depend on the number of integration points per element
and the relative sizes of the adjacent elements. Around the crack

tip, the elements are arranged so as to accomodate "natural" cor-

ners, see Fig. 1, so the approximation (3) is only needed farther

away from the tip, where the integrand varies slowly.

FORMULATION OF THE MATERIAL LAW

Within the ADINA computer code the Lagrangian formalism is
incorporated. Therefore it is possible to formulate an elastoplastic
material model which would be the correct generalisation of the
known Prandtl-Reuss equations with the von Mieses yield criterion

to the case of finite strain. The main features of such a material
model were outlined by Lee (1969) and Hibbit, Marcal and Rice (1970).
Since the calculation of the then deformation dependent material
moduli introduces a series of additional multiplications per each
integration point and load step, as a first step the following
procedure was used: The calculation is geometrically of first order,
but the stress-strain curve, which is input for the Prandtl-Reuss
equations, is evaluated in terms of technical stress versus techni-
cal strain. Through the definition of technical stress the deforma-
tion dependence of the material law is partly allowed for, if not
correctly generalized to the multiaxial case.

DISCUSSION OF RESULTS

In Fig. 4 the load displacement curves for the plain strain and the
plain stress case are shown, as obtained with a plate 40 mm wide,

and a central crack with 2 mm half length. The stress strain curve
was based upon measurements for X6CrNi1811 weldments at 450 °C.
Figure 5 shows the load versus J-integral for the same case.

Of course also the evaluation of the crack opening displacement is
easily possible, yet it is not so useful, since a comparison with
experiments is more difficult. To correlate experiments with different
probe dimensions, the J-integral is used as the charakteristic
parameter. That is, any value of load or displacement observed with a
thin probe corresponds to that load or displacement of the

thick structure, which belongs to the same value of the J-integral.
The relation between the J-integrals belonging to the same load of
different specimens is viewed upon as a geometry factor. Fig. 6
demonstrates that relation for two similar specimens. The width

as well as the crack length of the minor specimen equal 0.22 times
that of the other.
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Fig. 5 Load versus J-curves
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Fig. 6 Ratio of J-integrals for two different
crack sizes, but the same crack size to thick-
ness ratio

The question remains, whether the Material model described

above is valid with the overall strains observed. If so, there
should be no differences between Piola-Kirchhoff stresses and
Cauchy stresses, and hence between geometrical linear and non-
linear calculations. It was found that this is nearly so until the
overall strains reach a value of 5 %, but the descrepancies between
the resulting displacements increase steadily, if the strain goes
beyond some 10 %. To assess a limit for the useful range of first
order calculations, the same problems will be calculated with the

Lagrangian formalism and a correct deformation dependent material
law in the near future.
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