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ABSTRACT

A procedure is described for determining the ductile instability of cracked struc-
tures subjected to prescribed displacement loading. The procedure is based on the
CEGB failure assessment diagram and is illustrated using as an example a cracked
beam of various span lengths. It is shown that ductile instability is possible
under fixed displacement conditions provided the gauge length over which the dis-
placement is prescribed is long enough. The equivalence of the procedure to a J
resistance curve analysis is demonstrated.
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INTRODUCTION

It is well known that the resistance to stable ductile crack growth measured in terms
of J increases as the crack extends. At instability the crack driving force must
increase at a rate in excess of the increase in resistance and this may require the
accommodation of relatively large displacements. However in structural systems

where the geometric constraints are large, or where the loading results from pres-
cribed displacements, the ability to accommodate the extra displacements resulting
from crack growth is limited unless significant unloading occurs. Hence the likeli-
hood of crack growth leading to ductile instability is dependent on the compliance

of the structure and, in the case of imposed displacements, the gauge length over
which they are applied.

In this paper these aspects are investigated by studying the influence of gauge
length on the fracture behaviour of a cracked beam subjected to fixed displacements
on its ends equivalent to a pure bending moment. This system is analysed using the
ductile instability method proposed by Milne (1979a).
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DUCTILE INSTABILITY ANALYSIS

Milne's (1979a) proposal for determining ductile instability is based on the failure

assessment diagram of Harrison, Loosemore and Milne (1977). Two parameters are
evaluated,
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where K; is the linear elastic stress intensity factor at the applied stress ¢ and
for a crack of original length a which has grown a distance Aa, 07 is the plastic
limit stress and Kq(fAa) is the crack growth resistance toughness. The latter is
obtained from the J resistance curve, Jgr(Aa), through thg formula Kzg(Aa)=E'JR(AaL
where E' is Young's modulus E for plane stress and E/1-v°) for plane strain,

V being Poisson's ratio.

To predict the instability stress a locus of coordinates S,,K, is plotted at constant
applied stress but increasing postulated crack extension, Aa, on the failure assess-
ment diagram, curve ABC in Fig. 1. A load factor F is then evaluated as a function
of Aa, either graphically, as shown in Fig. 1, or using the expression (Chell and
Milne, 1979).
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FIG.1 THE FAILURE ASSESSMENT DIAGRAM AND THE
PREDICTION OF DUCTILE INSTABILITY. THE
MAXIMUM LOAD FACTOR IS FB
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The point of instability is defined at the maximum value of F, the stress at this
point being given by the product of this maximum value of F and the applied stress.
The curve A'B'C' in Fig. 1 has been drawn at this maximum stress to demonstrate
that the instability occurs when this locus is tangential to the failure line.

Tt has been shown previously that this method of analysis is equivalent to a ductile
instability analysis based on J if the functional form for J is taken as (Chell and
Milne, 1979)

lnsec (E-Sr) (3)
2 . : ;
where Jl = Kl JE' is the linear elastic value of J.

PRESCRIBED DISPLACEMENTS

The foregoing analysis applies directly to primary loads e.g. internal pressure.

For residual and thermal loadings plastic collapse is not possible and hence their
plasticity effects cannot be directly incorporated via S,; modifications of the
type proposed by Chell (1979) and Milne (1979b) are required. When the loading is
defined in terms of prescribed displacements, however, additional problems arise
because extension of the crack causes a reduction in the effective load, although
the applied value of J may be increasing. This requires further special techniques.
For displacement controlled cases, once the effective or relaxed load has been
determined, S, and K, are definable. Thus the problem reduces to determining this
load, L(a), as a function of crack length for the given displacement, §. In two

dimensional cases this can be obtained from the equation (Chell and Ewing, 1977,
Chell, 1979)

9
§ = AOL(a)+B 5L J da (4)

o

where A, is the compliance of the uncracked structure, B its thickness and the
derivative is evaluated at L(a). For fully circumferential cracks in axisymmetric
geometries the equation is

a

§ = A L(a)+2r g—L (RYa)J da (5)

o

Here if the crack is internal, R is the internal radius and the positive sign is
taken in the brackets, while for an external crack R is the external radius and
the negative sign in the bracket is taken. Thus for any appropriate functional
form for J the problem can be solved. The most convenient form for J is that of

equation (3). This is consistent with the failure procedures developed using the
failure assessment diagram, provided the stress o is replaced by the effective
stress o(a), which is to be determined, and is given by o(a) = AL(a) where A is a

geometric term of dimensions (length)_z.
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EXAMPLE A CRACKED BEAM

Consider a cracked beam subjected to end displacements which are equivalent to a
pure bending moment. In this case Ao = 53/4EBt3, where S is the span, t the width
of the beam and o = 3LS/2Bt2. The plastic collapse stress 0] = 2.185(l—a/t)2 in
plane strain (Green and Hundy, 1956) where 0 is a flow stress (e.g. the average of
yield and ultimate stress) and K1=oa%Y(a/t)where Y is a geometric term. For the
purposes of calculation we take the following geometric and material values.

I

100mm,
50mm,
= 30mm
= 400, 800, 1600 and 3200mm
= 400MPa
! = 200GPa
= 1looMPa m*

* 1
mat = 25 and 100m™ +.

and
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Here K; is the toughness at the initiation of crack growth and Tpat is the parameter
introduced by Paris, Tada, Zahoor and Ernst (1979) which defines a linear Jg(Aa)
curve through the equation

-2
s g t
JR(Aa) = Ji + = Tmat.Aa 6)
or, in terms of KQ(Aa)
_2 ;2
i tTmat
K, (pa) = X (1 +——F .ba )
i 2
K,
A,
CRACK LENGTH, mm
30 3 34 36 38 40 12
500 I l l : : l
P
=2
~ g PLASTIC COLLAPSE
2= STRESS, 218 & (1 - a/t)
=
22 | e «
b 300 B~ .
v W "N
o - e
o ><
o w
5oy
S~ 20 |— STRESS-CRACK EXTENSION ———— T_ =100m""'
o - -
§ = CURVES  eeereereene T 25 m~!
T
100 | | | | | ]
0 2 4 6 8 10 12

CRACK EXTENSION, aa , mm
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Following the procedures outlined by Milne (1979a) and Chell and Milne (1979) loci
of applied stress as a function of crack extension were calculated for the two That
values and assuming dead loading. The results are shown in Fig. 2. Crack initia-
tion occurs at a stress level of 263MPa, and the maximum loads (coincident with in-
stability for dead loading) were 328MPa and 382MPa (after crack growth of 5.0mm and
2.8mm) for That Values of 25m™1 ana 100m~1 respectively. The corresponding cal-
culated values of the displacements due to the crack, B S/SLo Jda, were 0.81lmm and
1.28mm respectively. The total overall displacement at maximum load is given by
the crack contribution plus the uncracked beam displacement, 0S“/6Et. These were
determined for the four span values considered above. Equation (4) was then used
to determine the relaxed stress, o(a), and hence the corresponding applied J, as
the crack extends from 30mm, assuming the displacements at maximum load were
initially prescribed. The results are compared with the Jr(Aa) curve for Ty +=
25m~ 1 in Fig. 3a and for Tpat = 100m~1 in Fig. 3b. Of course all the J applied
curves intersect at the same point, that predicted from the dead loading situation.
The relative stability of the beam at this point is determined by the condition

for tangency between the J curves and the Jr(da) curve. From Figs. 3a,b it can be
seen that for both values of Tpat tangency points are only obtained for the span of
3200mm and for dead loading. Therefore instability is predicted for these cases
i.e. the crack will extend without further displacement being applied. For the
other three cases further crack extension can only occur if the displacement is
increased. Figs. 3a,b therefore illustrate the sensitivity of ductile crack growth
to gauge length and also that even under displacement control ductile instability
is possible after some amount of crack growth.

In Fig. 4 the Tmat = 100m™! results for s = 400 and 3200mm and dead loading are
shown plotted on the failure assessment diagram. Here K, and Sy were evaluated
for the instantaneous crack length using the calculated values of o¢(a). As
expected the crack growth locus for S = 3200mm is tangential to the failure line,
as is the dead loading curve. In contrast the locus for S = 400mm falls inside
the failure curve after intersecting it, showing again that the applied displace-
ment must be increased for further crack extension. It is clear that this des-
cription of ductile cracking is entirely equivalent to that of the J resistance
curve approach.

DISCUSSION

Because in the elastic-plastic regime displacements are not linearly proportional to
load there is no simple way of allowing for prescribed displacement loading. The
failure assessment diagram, and the functional form for J which is consistent with
it (equation (3)) allow the problem to be treated, but the load displacement curve
has to be independently evaluated. If the prescribed displacements are small enough
for the structure to remain linear elastic this is not a difficult problem, but if
the structure has entered the non-linear regime equations (4) or (5) must be solved.

However a simple pessimistic analysis which can be tried first is to plot the locus
of assessment points as a function of postulated crack extension, Aa, at constant
displacement assuming linear elastic behaviour. In this case Sy and Ky are
evaluated using the elastically determined relaxed stress which is givenby equations
(4) and (5) with J = J; as

A A
olatha) = &/ + %, 2)
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atha

2
where Z = 2B aY da
o

for the two dimensional case and
at+ha

+ 2
Z = 2m (R-a) a¥Y da

for axisymmetric geometries. Chell (1979) has demonstrated that the failure line

in Fig. 1 is a lower bound to failure curves determined under prescribed displace-
ment conditions using the foregoing approximation. Because of the assumption of a
linear relation between load and displacement, a failure analysis can be performed
on the locus of assessment points in a similar manner to the case for dead loading.
If this analysis proves that adequate margins of safety exist then no further work
is required. However, if adequate safety margins are not obtained and an elastic-

plastic analysis is required then similar procedures to those described in the
cracked beam example should be used.

CONCLUSIONS

(1) A ductile instability analysis can be performed under prescribed displacement
loading using a modification to the procedure developed by Milne (1979) for
prescribed loads.

(2) For prescribed loads the analysis requires the plotting of a locus of assess-
ment points, as a function of postulated crack growth at the applied load, on
the CEGB failure assessment diagram.

(3) For prescribed displacements the analysis requires the plotting of a locus of
assessment points, as a function of postulated crack growth at the applied
displacement, on the CEGB failure assessment diagram.

(4) In both cases stability is predicted if part or all of this locus falls within
the failure assessment line.

(5) The instability condition is determined as the load or displacement at which
this locus becomes tangential to the assessment line.
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