
 1 

 

 

The Block Element Method for a Block Structure 

 

V.A. Babeshko1,a , O.V. Evdokimova 2,b , O.M. Babeshko 3,c  

1 350040, Krasnodar, Stavropolskia, 149, Kuban State University, Russia 

2 344006 Rostov on Don, Chehov av, 41, Southern Scientific Center of the Russian Academy of 

Sciences, Russia 

3 350040, Krasnodar, Stavropolskia, 149, Kuban State University, Russia 

a
(babeshko@kubsu.ru), 

b
(evdokimova.olga@mail.ru), 

c
(olg.@kubsu.ru) 

 

Keywords: boundary-value problems, factorization, block element, functional equation, pseudo-
differential equation, generalized factorization, block structure, exterior form, matrix-function 
 

 The block element method described in [1-5] as applied to an individual domain is extended 

herein to a collection of neighboring domains, which are referred to as block structures. As applied 

to boundary value problems for such collections of domains, this method has specificity features 

that distinguish it from traditional approaches.  

1. By block structures, we mean materials occupying bounded, semibounded, or unbounded 

domains, which are called contacting blocks. It is assumed that each block in a block structure has 

its own specific behavioral in response to physical fields of a various nature. It is also assumed that 

these fields are described by boundary value problems for systems of coupled partial differential 

equations with constant coefficients. Media of this type are typical of the earth’s crust, structural 

materials under complex physical-mechanical conditions, nano materials, crystal structures of 

various arrangements, and electronics materials. A similar structure is also possesse by various 

materials, including those created by combining only nanoscale components or macro- and 

nanoscale components. 

We consider structures with three-dimensional blocks. The absence of considerable 

constraints on boundary value problems describing the properties of individual blocks suggests that 

these block structures can have a wide variety of properties. In the general case, the concept of a 

block requires that the boundary of the domain a boundary value problem, including multiply 

connected domains, be unchanged and piecewise smooth. Each block can be bounded or unbounded 

and can involve coupled processes related to solid and fluid mechanics and electromagnetic, 

diffusion, thermal, acoustic, and other processes. Block structures are more general objects than 

piecewise homogeneous structures, in which the physical parameters of the medium are assumed to 

change in jumps in the transition from one block to another with the preservation of the medium 

material. The last property means that certain coefficients in the differential equations of a boundary 

value problem undergo jump variations in the transition from one block to another with the type of 

the boundary value problem being preserved. 

Block structures have a wider range of properties than piecewise homogenous structures. 

This follows from the variety of blocks’ properties, their shapes, and the character of interblock 

interactions and also results from the interaction of physical fields, some of which are produced or 

transformed by blocks. A special case of block structures is layered structures. Such structures with 

plane boundaries for linear boundary value problems can be viewed as fairly thoroughly 

investigated. Block structures are studied primarily by numerical methods, for which unbounded 

domains always present difficulties. The block element method, which is a generalization of the 
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integral transform method, gives answers to questions concerning the properties of physical fields 

in each block even at the stage of solving boundary value problems. 

2. We formulate the following boundary value problem for a block structure. Assume that 

the block-structure domain   consists of subdomains 1 2b , b , ,...B  with boundaries   

b   It may happen that a portion of the block’s boundary is shared with another block, in which 

case it is a contact boundary. The remaining non-contact portion can be free or subject to external 

forces. It is assumed that a boundary value problem for systems of partial differential equations 

with (their own) constant coefficients is set in each domain 
b . 

For each block, the boundary value problem for the system of P  partial differential 

equations in the three-dimensional block domain   can be written as 
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The following matching conditions are set on the common contact boundary b d   
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The boundary value problem is studied in the spaces     of tempered distributions described 

in [6]. 

In the general form, the above boundary conditions describe the contact of blocks with the 

relevant components of physical fields coinciding on the common boundaries as dedicated by the 

corresponding physical laws. The scheme for applying the differential factorization method to such 

domains can be described as follows. 

Following the differential factorization method [1], the boundary value problem is reduced 

to a system of functional equations with each domain 
b considered separately. As a result, we 

obtain the system of functional equations. 
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Here, we used the notation adopted in [1] with additional indices b. For example,      is the 

vector of exterior forms of the boundary value problem in 
b . 

3. According to the differential factorization method, the next step consists of factorizing the 

matrix function    3b( )K        given by (3). For this purpose, we choose a matrix function                            
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can be represented in integral the form 
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Here,        is a closed contour such that the domain      contains only the zeros v v

s sz , z 
     

and       , while the domain      contains only the zeros  n

     . The closed contour     encloses a 

domain containing all the zeros  v v

s sz , z 
   , and  n

     . Representation (5) implies that the 

elements of     1

3 ,b

 Κ
     are rational functions with their only singularities being      and    . The 

term       1

3bK      containing them is given explicitly. 

In the case of noncontact boundaries, the boundary conditions in the differential 

factorization method are set according to the rules described in [1]. 

The boundary conditions are fulfilled according to the following scheme. First boundary 

conditions on the noncontact boundary of each block are taken to the corresponding vectors of 

exterior forms in functional equations (3). For contact blocks, matching conditions (2) hold on the 

common boundaries of neighboring blocks. Depending on the properties of the described fields, 

these conditions can include some relations for the solutions and their derivatives. In the simplest 

case, this is the equality of the solutions and their derivatives on the common boundary in the 

transition from one block to another. These relations are taken to the corresponding vectors of 

exterior forms of functional equations (3), which are preliminary solved for the unknown normal 

derivatives on the boundary. The last procedure ensures the fulfillment of contact boundary 

conditions (2) in the solution to pseudodifferential equations. 
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Assume that the blocks are convex. Omitting the intermediate transformations, which can be 

found in [1], we find that the solution in each block is represented as 

    3 31 1

3 3 1 2 33

1

8

i x

b rb b b b( ) , e d d d , .
            




 

 

   x Κ Κ ω x  

To illustrate this solution, we evaluate the integral with respect to  
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  by applying Leray’s 

residue form theory to obtain 
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Here, the boundary   b      for the chosen     3 0x  ,  x                     is divided as 

follows: 
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If a block degenerates into a half-space or a layered medium, the pseudodifferential 

equations appearing in the course of solving the boundary value problem degenerate into algebraic 

equations. The latter are inversed, and the solution is constructed in a finite form [1]. 

     4. The possibilities of the block-element method are displayed by its use in a number of 

polytypic problems presented below. 

     In [1-4], the concept of a block element is introduced, and a number of examples of particular 

block elements are given for certain boundary-value problems. It is shown that the block elements 

are determined by the boundary-value problem and can always be constructed for an 

unambiguously solvable boundary-value problem formulated for a set of partial differential 

equations of a finite order with constant coefficients in the region with a piece-smooth boundary [5-

7]. They also can be constructed for the boundary-value problems with variable coefficients 

admitting the separation of variables [8]. 

       In the general case of the boundary-value problems with variable coefficients, their region of 

formulation of the boundary-value problem is divided by a mesh for using the block-element 

method. The mesh should be so dense that it could be possible to consider the coefficients in a 

division cell as constant [1-4, 9]. 

        A certain practice of applying the block elements shows that their use simplifies the 

formulation of a number of boundary-value problems and also the construction of their solutions. 

For example, the block-element method makes it possible to solve the boundary-value problems for 

homogeneous and inhomogeneous sets of partial differential equations in a similar way [7]. For its 

use, it is unnecessary to construct individually the general solutions of homogeneous differential 

equations and the partial solutions of inhomogeneous equations with the subsequent fulfillment of 

boundary conditions. In the unsteady boundary-value problems, the block-element method raises 

both the edge boundary conditions for sets of partial differential equations and the initial conditions 

of a boundary-value problem [10] to the rank of boundary conditions; i.e., the initial conditions in 

the block-element method become the boundary conditions. The block-element method makes it 

possible to consider the same boundary-value problems in the bounded, semi-bounded, and 

unbounded regions. 
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       The block elements enable us to simplify the derivation of certain important characteristics of 

the solution. 

        For example, the block elements describe the state function and the wave function of an 

elementary particle in the problems of quantum mechanics [11]. The normalized square of the 

modulus of its Fourier transform, which requires no calculation, gives the probability of keeping a 

particle in the block-element-carrier zone. Varying the shape of the block-element carrier, it is 

possible to obtain quantum-mechanical objects, which are more complicated than the quantum 

wells, wires and dots [11]. The pseudo-differential equations arising in these problems involve all 

cases of the particle energy state in the same way. 

        In the problems of continuum mechanics, the functions on the boundaries of the block-element 

carrier, which either require a determination or are set and included in the pseudo-differential 

equations, are the particular physical characteristics of the solution of the boundary-value problem 

under consideration. 

For example, in the problems of elasticity theory, these are the displacements or stresses on the 

block-element boundary; in the problems of the theory of plates, they are the displacements, angles 

of rotation, or shear and normal forces and moments. In the boundary-value problems of 

electrodynamics, it is the electric potential, the electric charge, the tangential component of the 

electric-field vector, and the normal component of the electric induction. 

       5. By the example of a particular boundary-value problem, we present certain general 

properties of the block elements revealing their features and admitting the generalization on the 

general case. Here and below, considering the construction of solutions of a boundary-value 

problem by the block-element method, we mean that the solution of the corresponding pseudo-

differential equations was constructed. 

       Let an unambiguously solvable boundary-value problem for the set of the partial differential 

equations of a finite order with constant coefficients be considered in the convex singly connected 

polyhedral region   with the boundary   [7]. The block elements of such a boundary-value 

problem represent the vectors, the components of which are block elements similar to the scalar 

ones in the case of the boundary-value problem for a single differential equation. Further, we do not 

distinguish these two concepts calling them block elements in both cases. 

 Let us consider various divisions of the region   by the mesh, the boundaries of which 

represent various planes. As a result, the region   is divided into n  polyhedral convex regions   

1 2k( n ), k , ,...,n               . Rejecting certain boundaries in the division mesh, we obtain a 

new division of the region   containing a smaller number of larger regions  

1 2k( p ), k , ,..., p, p n     , each of which can be a combination of several regions 

k( n ) ). Continuing the process of elimination of boundaries of the division mesh, we obtain the 

sequence of divisions           
1 21 p p ... n                   . 

 In the case of 1p  , we obtain a single cell, which proves to the region  . 

 The number n  can be either finite or tend to infinity. 

 For each division 
rp , we designate the block element corresponding to it as 

k rB ( p )    . We 

introduce the concept of the combination 

k r l s h sB ( p ) B ( p ) B ( p ), r s                                                                              (6) 

 

for the block elements contacting over the general boundary, which consists in constructing the 

block element located on the combination of their carriers. The number of united elements can be 

arbitrarily finite. 

 After constructing the solutions   of the boundary-value problem for each of the divisions 

by the block-element method, for doing which we convert the corresponding pseudo-differential 

equations [7], we obtain the representation of solutions for each r in one of the following forms: 
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11 2 1k r n

k

B ( p ), r , ,...,n, p , p n                                                          (7) 

 The cited formula displays the completeness of the block elements in 
s

H  for each of the 

divisions. We consider in more detail  (6), we obtain the representation of the function  , which is 

invariable in the left-hand side and expanded in terms of larger block elements. 

 Thus, for constructing the solution of the boundary-value problem by the block-element 

method, it is possible to diversify the choice of divisions of the region   in which the boundary-

value problem is formulated by the mesh on the basis of the reasons of an optimum selection of the 

corresponding block elements and their conjugation by means of solving the pseudo-differential 

equations. The fulfillment of this requirement substantially depends on the shape of the region of 

formulation of the boundary-value problem and the type of the differential equations for which it is 

formulated. 

 The practice of application of the block-element method shows that for constructing the 

block elements, it is possible in certain cases also to use other methods, which enable us to 

implement more quickly their derivation alongside with the general approach based on using the 

automorphism of varieties [8]. 

 Let us consider the block elements introduced previously in [1-4, 7, 9]. Obviously, each of 

them displays the right-hand sides of inhomogeneous differential equations and the boundary 

conditions of the carrier taken in certain spaces 
s

H  as a function in the open internal region of the 

carrier. The following statement is valid. 

 Theorem 1. The set of block elements of the boundary-value problem unambiguously 

solvable in certain space 
s

H  and considered in the region   with the piece-smooth boundary   

represents a topological set with the topology having the structure of hat of the  -region. 

 In the problems of continuum mechanics, the topology in the space containing the region   

is induced by the Euclidean space. 

 These are the boundary-value problem formulated in a certain region   with the boundary 

  that are responsible for the block-element origin and analytical properties. This theorem is 

related to the representation of solutions of the boundary-value problems in the form of an 

expansion in terms of the block elements capable of being united in the elements with larger carriers 

leaving invariable the solution   of the boundary-value problem. 

 This theorem explains the possibility of choosing a rich arsenal of every possible region 

admitted by the accepted topological structure and a particular boundary-value problem as the 

carriers of block elements. Each block-element carrier can have its own local system of coordinates, 

the relation of which with the local systems of carriers of neighboring blocks is controlled by a map 

[12, 13]. 

 6. The results displayed below show that the dependence of the block element on the 

boundary-value problem is not an invariable property. 

 Let us consider two boundary-value problems unambiguously solvable in 
s

H , for the set of 

partial differential equations with constant coefficients of an identical order having unknown vector 

functions of an identical dimension in the  region   with the piece-smooth boundary   [7]. 

 The following statement takes place. 

 Theorem 2. The solution of one of the above boundary-value problems admits the 

representation in the form of the expansion in terms of block elements of another boundary-value 

problem considered in the region   with the boundary  . 

 7. We consider the boundary-value problem in the region   with the boundary 

unambiguously solvable in Hs with respect to the vector function φ1 for the set of partial 

differential equations of a finite order with variable coefficients and without features. 

 We consider the previous boundary-value problem in the region   with the boundary 

with respect to the vector function of the same dimension for the set of the same partial 
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differential equations in which the constant values are found instead of variable coefficients 

providing the unambiguous resolvability of the boundary-value problem in 
s

H . 

 The following statement is valid. 

 Theorem 3. The solution 
1  of the boundary-value problem with variable coefficients 

admits the representation of the form of the expansion in terms of the block elements of the 

boundary-value problem with constant coefficients. 

  8. The possibilities of using the block-element method are even more extended due 

to the property presented below. 

 Let us consider the boundary-value problem for the set of partial differential equations of 

finite order unambiguously solvable in 
s

H  with the maximum derivative   in the region   with 

the boundary   [7]. 

 Let us designate the space of functions, which are continuously differentiated λ times with 

respect to all variables including the mixed ones, as   . 

 It is valid as follows. 

 Theorem 4. An arbitrary vector function   from  C ( ),                  , can be 

represented as the expansion in terms of the block elements unambiguously solvable in a certain 

space 
s

H  of the boundary-value problem for the vector function of the same dimension considered 

in the region   with the piece-smooth boundary   having the maximum derivative of the order 

  in the differential equations. 

 This theorem opens ample possibilities for the most different applications of block elements. 

Alongside with the results presented, these possibilities increase with using various forms of 

automorphism of varieties [14]. 
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