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Abstract. The evolution of surfaces exposed to an aggressive environment and mechanical load is 

studied. The evolution is the initial part of a stress corrosion process that leads to pitting, crack 

initiation and growing cracks. In conventional fracture analyses the growth rate of the crack may be 

computed using a modified Paris’ law. However, a known or a postulated crack is required. A 

serious drawback is that a large part of the lifetime of a crack or a surface flaw is spent during the 

initiation of the crack. The knowledge of the mechanisms leading from a pit, flaw, scratch, etc. to a 

crack is very limited. One reason is the complication caused by the less definite defined original 

geometry. The motivation for the present study is to increase the understanding of the transition 

from stress induced pitting to growing cracks.  

 

Introduction  
A strained body exposed to an aggressive environment may suffer from continuous material 

dissolution during corrosion. The result is a progressive roughening of its surfaces. After 

roughening pitting occurs and eventually cracks will form and grow into the body. Apart from an 

aggressive environment and a mechanical stress the material needs to have an inherent sensitivity or 

to be sensitized to the environment. This can be due to local heating, plastic deformation, fatigue 

damage, etc. The aggressive environment can be a bulk aqueous environment surrounding the body 

or a micro environment, such as moist in pits, crevices, under deposits and not seldom very local 

environments created by microbial colonies established on the body surface.  

 

The corrosion process produces a thin film of metal oxides or hydroxides or compounds thereof. 

Even though the thickness of this film is typically not more than a few nanometres, it reduces the 

rate of dissolution by several orders of magnitude. If kept intact, this protective film would increase 

the service life of an exposed structure tremendously. However, occasionally or repeatedly the film 

is damaged as a result of variation in load, electro-chemical environment or, as was recently 

discovered, by microbiological activity. Some microbes may even have the oxide film or the 

substrate as an essential component of their metabolism (cf. ASME [1]; Beech and Sunner [2]).  

 

The focus here is on the evolving surface morphology and initiation of cracks caused by the 

corrosion. The mechanism is the mass transportation resulting after dissolution and diffusion of 

matter into the environment or surface diffusion (see Fig. 1). The strain energy and the chemical 

energy provide driving forces for dissolution and transport of molecules. The observation is an 

evolving surface waviness that has been explained theoretically by [3-5]. The spectrum of the 

waves depends on the strain energy of the body surface and the surface energy. The elastic strain 

energy tends to increase the waviness of the surface whereas the surface energy tends to decrease 

the waviness. Waves with wavelengths longer than a stress dependent critical wavelength grow, 

while waves with shorter wavelengths decay. Experimental results by Kim et al. [5] show that the 

typical wavelength in, e.g., aluminium is on the scale of a few hundred nanometres when the stress 

is large and comparable to the yield stress. 



                            
Fig.1. a) Corrosion crack penetrating a bimaterial interface between austenitic steel and pressure 

vessel steel of type SA533C11. b) The tip of one of the crack branches. Note that the widest part of 

the crack is at the crack tip. Crack length is 7 mm and notch width is around 10 m. Reproduced 

with permission from Vattenfall AB, Sweden. 

 

Several non-linear analyses show that the indents grow markedly faster and the peaks of the surface 

grow slower. This sharpens the indents and leads to a formation of pits. The prediction is that the 

indents eventually approach a singular state, where the deepest part of the indents locally assumes 

the geometry of a sharp crack tip or a cusp. In earlier studies [6,7], the dissolution was assumed to 

be a function only of the stretching of the surface. A threshold strain was invoked to comply with 

the limited elastic properties of the oxide film. It was then predicted that the indent sharpens and 

become crack like. Thereafter, growth continues in the form of a blunted crack or, in a strict sense a 

deep notch with a relatively sharp tip. Fig. 1 b) shows a real stress corrosion crack in a nuclear 

pressure vessel. The crack tip always preserves a finite radius that may depend on the crack tip 

driving force and the thermodynamic chemical and mechanical properties of the surface. Further, 

the crack frequently branches and the crack width becomes slightly larger as the crack gets longer. 

 

Phase field modelling 

For a virtually sharp surface, treated as a discontinuity, specific chemical and mechanical properties 

may be ascribed to the surface. This simplifies the analysis and has normally no significant 

influence on the thermodynamical behaviour of the body. However, when the distance between 

structural inhomogeneities or other characteristic distances are of the same order of magnitude as 

the thickness of the surface, e.g., as at a rough surface, at the tip of a crack or during emission of 

dislocations etc., the thickness of the surface may play a role and the negligence thereof may lead to 

unrealistic predictions. As opposed to this, a diffuse surface model assumes a continuous variation 

of composition, structure and other properties within the modelled region (cf. Landau and Lifshitz 

[8]). This includes the body, the diffuse surface and the surrounding environment. Here, the total 

free energy of the continuous body is formulated as a function of the material composition. The 

width of the surface layer is not assumed given, but instead the model predicts surface layers with a 

finite width and the associated surface energy is a result of the thermodynamical state of the 

material composition of the surface. A diffuse interface model was first applied by Cahn and 

Hilliard [9], to study the thermodynamics of a coherent interface between two phases. Their predic-

tions include the width of the interface and the corresponding interfacial energy.  

 

Phase fields. For a general case two types of so-called order parameters are introduced to model the 

compositional and structural non-uniformities. An order parameter is defined as a continuous field 

that is referred to as a phase field. The total free energy of the system is formulated as a function of 

the phase fields. The variation of the free energy with respect to the fields act as driving forces for 

the evolution over time, following the Cahn-Hilliard equation for the conserved order parameters 



and the Ginzburg-Landau equation for the non-conserved order parameters. In the proposed study 

an order parameter, , is used to distinguish empty space from the solid and to model the properties 

of the surface of the body.  

 

The goal of this paper is to use relevant physical properties of the surface layer so that the evolution 

of the corroding body can be captured. The modelling results in the formation of pits, initiation and 

growth of cracks and crack branching despite that no criteria is applied for any of the mentioned 

events. The tendency to instable surface behaviour is inherent in the model and thus no criteria are 

needed. The body is assumed to be isotropic with a surface energy defined for a planar surface in 

the selected environment. Further, the body is assumed to remain in mechanical equilibrium. The 

tendency of the surface to change the shape of its reference configuration is governed by a chemical 

potential. As the surface configuration is varied, the positive surface energy tends to flatten the 

surface while the positive strain energy is inclined to roughen the surface. 

 

The fundamental problem is for a semi-infinte body with a planar surface representing the initial 

structure. A Cartesian coordinate system x1, x2 and x3 is giving a two dimensional representation of 

the body, in the plane x3 = 0. The initial plane surface coincide with x2 = 0, dividing the space into 

the half plane, x2 ≤ 0, initially covered by the body and the halfplane, x2 > 0, that is empty. In its 

initial configuration, the surface region, i.e. the transition region between the empty space and the 

solid body, is small compared to the linear extent of the considered geometry. The evolution of the 

body is obtained by minimizing the free energy. This is achieved by formulating the total energy as 

a functional of the phase field. From this the kinetics is derived along the steepest descent path of 

the total energy, using the time-dependent Ginzburg–Landau equation. In the present study the total 

energy of the structure consists of an elastic strain energy, a chemical energy and a gradient energy. 

The variations of these energies are assumed to be the only driving forces evolving the surface 

morphology.  

 

The solid material is assumed to be linear elastic with the elastic modulus Eo and Poisson’s ratio ν. 

The total energy of the system is composed of the Landau chemical potential energy, Fch, the 

gradient energy, Fgr, and the elastic energy, Fel as follows:  
 

  



F  Fch Fgr Fel  .  (1)  

 

Here the Landau chemical potential energy is defined by 
 

    



Fch U().  (2)  

 

For a thermo dynamical treatment of phase transformation U() is obtained from a phase diagram. 

The compositional parameter  is defined in the interval || ≤ 1, where  = 1 denotes the body and 

 = -1 denotes empty space. Therefore a double-well Landau potential with the requirements that 

U’(±1) = 0 and U’’(±1) = 0 is selected. The simplest polynominal would be the symmetric double-

well potential 
 

    



U()  p(
1

4
4 

1

2
2).  (3)  

 

The gradient energy is given as follows 
 

    



Fgr 
gb

2
()2

.  (4)  

 

The material parameter, gb, is related to the thickness of the surface.  



The body has the elastic modulus Eo and a Poisson’s ratio ν. The elastic modulus is a function of the 

composition, i.e., E = E() in the entire modelled region. It should approach the elastic modulus of 

the solid, Eo, as  → 1 and vanish as  → −1 and the thermodynamic driving force should vanish as 

|| → 1 which leads to the requirement E’() → 0 as  || → 1. The simplest polynominal approach 

that fulfil the requirements is  
 

    



E ()  
1

4
(3  3  2)Eo ,  (5) 

 

Poisson’s ratio  is assumed to be independent of . The elastic deformation of the virtually empty 

space occurs at insignificant stress. To simplify the analysis anti-plane deformation is assumed. 

Thus, the only remaining displacement component is u3 and the elastic strain energy is given by  
 

    



Fel 
E ()

4(1)
u3 

2

.  (6)  

 

The Ginzburg-Landau equation, applicable for non-conserved quantities is used for matter in this 

case. This is because the corrosion is assumed to be a consuming process at which matter disappear. 

Thus, the evolution of the composition parameter,  is given as the rate     



 / t  proportional to the 

variation of the free energy, as follows:  
 

  





t
 L

F

  
,  (7)  

 

where 
  



L  is a mobility parameter (cf. Cahn and Hilliard [9]). According to Lagranian formalism the 

variation is given by, 
 

    



F



F




F

()
. (8)  

 

For the order parameter  and application of (7), insertion of (3), (2) and (4) into (8) gives the 

governing equation for the evolution of ,  
 

    





t
 L{[

3Eo

16(1)
(u3 )2  p](2 1)  gb

2} .  (9) 

 

Applying (8) for the displacements gives the following governing equation,  
 

    



u3

t
 Lu {2u3 

3( 1)

4( 1)(  2)
()u3} .   (10) 

 

The equations (9) and (10) are solved for different initial conditions for  and boundary conditions 

for  and u. The initial conditions of  define the initial shape of the body. For the integration of (9), 

the mobility constant Lu is chosen sufficient large, so that close to static conditions are achieved. 

The desired goal is to fulfil mechanical equilibrium, i.e.     



u3 / t .  

 

The resulting equations (9) and (10) constitute a system of nonlinear elliptic-parabolic equations. 

Solutions for given initial conditions and boundary conditions is obtained by combining splitting 

methods with a semi-implicit time stepping scheme using finite differences. The calculations are 

performed in a moving coordinate system where the known solution for a straight corroding edge is 

subtracted from the sought solution. 

 

The model 

Consider a large body with a traction free wavy edge, with a wave amplitude  and the wavelength 

  (see Fig.  2). The  body  initially  occupies  the  region  x1 <  sin(x22/) and the  rest  is  defined  as  



 
Fig. 2. Wavy initial body surface with wavelength  and wave amplitude . 

 

empty space. Strictly, this would imply that  = 1 in the region covered by the body and  = -1 in 

the remaining body. However, this would not meet the requirement || < 1. To avoid this 

inconsistency, the initial field  is chosen to be 
 

    



   tanh
x1  sin(x22 / )











,  (11) 

 

where the parameter  determines the thickness of the layer where   shifts from near 1 to near  -1. 

A remote shear     



 / x1  is prescribed as     



x1

2  x2

2  .  
 

  
    





x1

 0 and u3   at | x1 |


2
,  (12) 

 

    



 1 and 23 0 as x2 ,  (13) 
 

and        



 1 and 23 0 as x2 ,  (14) 
 

As a result of the analysis as the shear modulus vanishes in the space outside the body this will 

ensure that the body surface becomes traction free. 

 

Results and discussion 

First the problem for a straight edge is studied, i.e. / without mechanical load. The resulting 

phase field  is shown in Fig. 3. The result from two different mesh sizes may be compared. For the 

courser mesh the resolution is around 5 nodal points covering boundary layer within which the 

phase undergo the transition from solid body to virtually empty space. With the finer mesh, the 

boundary width is covered by around 10 mesh elements. The markers indicate the mesh resolution. 

Included in the figure is the analytical result by Ginzburg and Landau [10], 
 

    



   tanh
p

2gb

x2 . (15) 

 

As observed the finer resolution gives very accurate results. The width of the boundary region is 

around 6 to 8 times 
    



2gb / p . About 10 elements seem to be sufficient to achieve a good accuracy. 

This resolution is selected for the remaining study. 
 

An applied stress results in a dissolution of material at the edge of the body, e.g. the propagation 

rate of the edge, e.g. the contour  = 0, is 
 

    



c  3L{Eo
2 / 2(1)} gb / 2p . (16) 



 
Fig. 3. The phase  across the boundary layer region. Analytical solution [10] and numerical with 

course (+) and fine (o) resolutions. Mechanical load is not applied. 

 

 

 
 

Fig. 4. Dissolution rate as a function of the strain energy density. The dashed line shows the analyti-

cal result (16) for the propagation rate of the contour  = 0. The markers show the numerical result. 

 

 
 

Fig. 5. The growth rate of the amplitude  of the surface waves as a function of their spatial 

frequency k = 2/. The dashed curve is the growth rate 
    




.

 LEo(2gb / p)(kc  k)k , where  is a 

non-dimensional constant. 





As observed the dissolution rate is proportional to the strain energy of the material. In Fig. 4 the 

numerical result is plotted versus strain energy density. As observed the numerical result follow 

closely the analytical prediction. The result is expected for / = 0. For a wavy surface this linear 

relation ship between dissolution rate and strain energy is only expected as long as  .  

 

The waviness for   0 will give different dissolution rates because of the variation of stress that 

is caused by the non-homogeneous boundary. The dependence of the wave number k = 2/ is 

shown in Fig. 5. Waves with an over critical wave number decay whereas waves with lower wave 

number increase in amplitude (see e.g. [6], [5]). The phase field model also features the same 

behaviour. As the figure shows above the critical wave number, kc, the growth rate of the wave 

amplitudes become negative. The agreement with the analytical result for a sharp boundary is 

reasonable for wave numbers in the vicinity of kc. For longer waves, k < 0.5kc, the divergence is 

large and wave numbers less than 0.3kc could not be accurately computed seemingly because of 

insufficient mesh properties. 

 

Figures 6 a and b show the phase field and the corresponding stress distribution after continued 

dissolution. As the figure shows, the surface waves develop into pits and cracks the continue to 

grow in parallel as opposed to the normally observed that one pit or crack take the lead and cause 

the other to stop because of an insufficient driving force. 

 

In the analysis so called general corrosion of material has been ignored. This refers to the 

dissolution of material that occur irrespective of mechanical load. To add this effect a phase 

gradient term is added to according to the following 
 

    



g

t



t
 L()2(2gb / p) , (17) 

 

where  is an arbitrary dimensionless constant. To explore the effect of general corrosion (17) was 

computed for an initially slightly wavy surface. The result displayed in Fig. 7 compare the result for 

 = 0 and     



  { 2Eo / 4(1)} , where the latter give a contribution to the dissolution rate 

comparable to the dissolution caused by the strain energy. 

 

 
    a)        b) 

 

Fig. 6. a) The morphology of the unstable surface after the time . Red shows the solid 

material and blue is empty space. b) The corresponding distribution of von Mises effective stress 

(1+)e/Eo. At the bottom of the deep notches the stresses are observed to be around 3 times larger 

than the nominal stress.  



 
         a)                   b) 

 

Fig. 7. Simulation of stress driven dissolution. Time is increasing from top to bottom. In a) simula-

tion pure stress corrosion and in b) general corrosion is added. 

 

Conclusions 

Stress corrosion can be modelled as a moving boundary problem. Phase field modelling simplifies 

the analysis and the tracking of the moving boundary. The instability of a flat surface subjected to 

mechanical load is in agreement with results from traditional analyses. Formation cracks and crack 

growth are captured.  
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