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Abstract. Fatigue in a notched specimen is a common problem in life assessment. The stress state at 

the notch root is often multiaxial and varies with distance even under uniaxial loading conditions. In 

the present work four multi-axial fatigue models are investigated. Especially, the Cruse-Meyer 

Model is extended to multiaxial fatigue and studied in detail. By combining it with the critical 

distance method, the notched fatigue life can be predicted reasonably.  

 

1. Introduction  
In design of a gas turbine engine, notches cannot be avoided, for instance, in disks and blades. They 

cause local stress concentrations and lead to fatigue failure earlier. In industrial design the stress 

concentration factor, Kt , is often used to characterize the degree of stress concentration. Under 

cyclic loading, the fatigue notch factor, Kf, is introduced to describe the change of fatigue strength 

[1]. Notched fatigue strength depends not only on Kt, but also on the stress gradient which describes 

the material volume with a high stress. Peterson [2] and Neuber [3] try to describe the difference 

between Kf   with Kt   through empirical relations. Siebel and Stieler [4] proposed using the stress 

gradient at a notch root for evaluation of the notch effect. Taylor developed the former works and 

proposed the theory of critical distance (TCD) [5]. The TCD proposed four different versions: (a) 

the Point Method (PM) in which the stress at a distance from the notch root is used for life 

prediction; (b) the Line Method(LM), in which the average stress over a distance is used; (c) the 

Imaginary Crack Method (ICM) in which an imaginary crack of length is placed at the notch root 

and LEFM conditions assumed and (d) Finite Fracture Mechanics (FFM) in which the facture 

conditions are derived by assuming a finite increment of crack growth. At beginning the TCD is 

applied to predict the fatigue limit and focus on the HCF regime. Later Susmel and Talyor [6,7,8] 

successfully extended the TCD to the LCF regime. By employing an elasto-plastic critical plane 

approach, the TCD is extended to consider multiaxial fatigue.  

Many structural components are usually subjected to repeated multiaxial loadings, such as 

rotating, biaxial/triaxial loading, tension-torsion loading etc. Even under uniaxial cyclic loading, the 

presence of a notch will cause a local multiaxial stress fields near the notch root. Fatigue evaluation 

under multiaxial loading becomes one of major concerns in modern structure design and must be 

considered in notched fatigue life estimation. 

In the present paper, four multiaxial fatigue models are reviewed and compared. Then the 

extended Cruse-Meyer model is applied to the notched fatigue life prediction based on the Point 

Method and Line Method of the TCD group methods.  

 

2. Multiaxial Fatigue Criteria - Brief Review 
(a) Findley criterion  



The fatigue damage of Findley model [9] is defined as a linear combination of the shear stress 

amplitude and the normal stress.  
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The critical plane is defined as one or more planes within a material subject to a maximum value of 

the damage indicator, f. The critical plane of Findley model is calculated based on the macroscopic 

stress state but not related to the slip direction on the microscopic level. Findley did not defined a 

mathematical formula for the damage indicator, f. Some researchers assume that it can be 

determined by the Basquin's equation from the shear-mode cracking. 
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(b) Socie model 

Based on crack growth observations, Socie [10] found that the normal strain in the plane of 

maximum shear strain will accelerate the fatigue damage process during crack opening. The mean 

normal stress n,m was included to take account of the friction force reduction between slip planes. 

This results in 
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The equation was subsequently modified to correlate with total strain torsional data 

c
ff

b
f

fmnn NN
G

)2()2(
222

'

'

,max 








 .    (4)  

(c) Park-Nelson energy model 

Under cyclic loading, the strain energy density varies as the path of stress and strain fluctuates. 

Strain energy under cyclic loading can be divided into two parts: variable and static (or mean) strain 

energy part. The lifetime is related to the strain energy in analogy to the Manson-Coffin equation, as 

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The static strain energy is associated with the mean hydrostatic stress. The total variable strain 

energy per cycle in the above equation can be decomposed into deviatoric (plastic+elastic) and 

volumetric parts, 
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Further details of the Park-Nelson model are referred to literature [11]. 

(d) Extended Cruse-Meyer model 

The Cruse-Meyer model [12] includes both cyclic strain range  and mean stress m in an explicit 

power law form for the uniaxial loading condition: 
mCB
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where A, B, C are model parameters, m is the mean stress, Nf is the number of cycles to failure,   

is the strain amplitude. 

The model can be extended to multiaxial fatigue by combining with the critical plane concept. 

Taking the concept of the Cruse-Meyer model, material failure under stress multiaxial state is 

described by the maximum normal strain range and the mean normal stress acting on the maximum 

normal strain range plane. The extended Cruse-Meyer model is expressed as 
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Obviously, this equation is identical with the original Cruse-Meyer model. 

 

3. Verification of the Fatigue Models 



In the previous years, different multi-axial fatigue tests were done on Inconel 718 alloy, a typical 

high temperature Nickel-based alloy in the aerospace industry. In this study, four sets of multi-axial 

low cycle fatigue test results are collected from the public literatures [13,14,15,16]. The considered 

results included 100 data points which were tested at room temperature under uniaxial loading and 

proportional and non-proportional biaxial loadings.  

Following the previous brief review, the fatigue failure criteria were used to calculate the fatigue 

lives. Various material constants were from uniaxial fatigue data by fitting method. Fig. 1 presents 

the comparison between the predicted fatigue lifetime with the experimental fatigue lifetime for 

each criterion. Most of data are within the scatter band with a factor of 2. In details the models show 

different life predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                         (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                                                                           (d) 
Figure 1. Comparison of the predicted fatigue lifetime and experimental data for Inconel 718 after (a) 

Findley model; (b) Socie model; (c) Park-Nelson model; (d) Extended Cruse-Meyer model. 

 

To compare models quantitatively, the logarithm normal distribution analysis is presented. The 

calculated fatigue lifetime is compared with the experiments. Two error parameters are applied for 

the fatigue life verification:  

(1) The mean value is defined as: 
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(2) The standard deviation is defined as: 
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where n is the total number of test data, 
fN  is predicted fatigue lifetime and eN  is experimental 

lifetime. 

Obviously, the mean X predicts the conformity between the prediction and experiment. It 

indicates the degree of offset of the predicted fatigue lifetime from the experimental fatigue lifetime. 

If this value is negative, the predicted fatigue life will be on the conservative side. The standard 

deviation S reflects the scatter of the results. It provides a relative measure of the degree of scatter 

about the curve and the ability of failure criterion to correlate the stress/strain to the fatigue damage 

parameter. 

 

Table 1. Comparison of mean values and standard deviations  

 

Model Mean value Standard deviation 

Findley Model -0.17255 0.31927 

Socie Model 0.05943 0.26505 

Park-Nelson Model -0.01941 0.2214 

Extended Cruse-Meyer Model 0.0733 0.2387 

 

A good model is one for which both the mean and standard deviation of the error are minimized. 

From the Table 1 we learn that the deviation of the stress based Findley Model is larger than the 

strain based models and the energy based models. The mean values are not so different, except the 

Findley model. Generally, Park-Nelson Model provides the best agreement with experiment and the 

smallest scattering. The extended Cruse-Meyer Model takes the second place. The latter is simple 

and practical for engineering application due to its explicit expression form. Both two models show 

good correlations with proportional and non-proportional loading cases. 

 

4. Smooth and Notched Fatigue Tests at Elevated Temperature 

Strain controlled tests [17] were conducted in Karlsruhe on a series of tensile smooth and notched 

bar of Inconel 718 alloy at 300°C and 500°C. The stress concentration factor Kt for the notched bar 

is 2.1 and the notch radius is 3.255 mm. Three tensile loading paths (R=-1, 0, 0.6) were employed to 

identify the fatigue damage parameters. Extended Cruse-Meyer model was chosen for the following 

life prediction.  

Table 2. Extended Cruse-Meyer Model Parameters 

 

Temperature Parameter A Parameter B Parameter C 

C300  9.62E-6 -4.689 -0.0014 

C500  1.81E-14 -9.11748 -0.00237 

 

From the smooth fatigue test data, the least square fitting algorithm was used to obtain the 

parameters A,B,C of the extended Cruse-Meyer Model. The life comparison between the predicted 

results and the experimental results are plotted in Fig. 2. For 300°C the Cruse-Meyer model yields  

satisfied results and for 500°C, however, some data are fall outside the scatter band. 

 



 

 

 

 

 

 

 

 

 

 

       

 

 
(a)                                                                                    (b) 

Figure 2. Fatigue life comparison results based on Cruse-Meyer model at (a) 300°C and (b) 500°C. 

 

4. FEM Simulation for the Notched Tensile Bar 

To study fatigue failure around the notch ABAQUS/Standard had been used for the FEM analysis 

(Fig.3). The stress-strain relationships for 300°C and 500°C are approximated by the Ramberg-

Osgood model, as shown in Fig. 4. The elastic moduli are 188000 MPa and 174000 MPa for 300°C 
and 500°C, respectively. Computations are for cyclic loadings with isotropic hardening assumed. 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. FEM model                                        Figure 4. Stress-strain curves for Inconel 718.  

 

In fatigue analysis the alternating stresses and strains are of importance which are half of the 

stress and strain range. Fig. 5 shows stress and strain range distributions at the maximal loading 

along the radial direction from the notch root for R=-1. Due to the small peak stress at the notch root 

there is no significant yielding around the notch root. Below the root surface the stress state is 

general multiaxial loading mode, although the axial tensile stress dominates. Additionally, the 

stresses and strains vary with the distance substantially. Hence, the multiaxial fatigue models find 

application to analyze the problem. 

As indicated in the Fig. 6(a), the stress concentration and plastic deformations happen near the 

notch root when the mean stress is high enough and may cause strain hardening and cyclic 

hardening. Due to the local plastic deformations, the peak stress range is leveled off. Then the stress 

  

  



range decreases along the radial direction, however, the mean stress shows in a parabolic form, the 

lowest point is at the notch root and the highest at the distance ca. 1.5 mm (Fig. 6(b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                  (b) 
Figure 5. (a) Stress range and (b) strain range distributions along the radial direction from the notch root at 

the maximal loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                            (b) 
Figure 6. The stress distribution curves of all simulated results along the radial direction from the notch root 

of (a) axial stress and (b) mean stress at C500 . 

 

5. Notched Fatigue Prediction 

The prediction from the extended Cruse-Meyer model is displayed in Fig. 7, based on the local 

stresses and strains at the notch root. The parameters ABC are taken from the smooth fatigue tests 

listed in Table 2. Obviously, the prediction contains a wide scattering band and is too conservative, 

in comparing with experiments.  

Combining the extended Cruse-Meyer model with the critical distance method should improve 

the prediction. Two criteria, i.e. PM based and LM based, can be defined as: 
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Figure 7. The comparison between predicted and experimental results at C500  on surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                           (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)                                                                           (d) 

Figure 8. The comparison between predicted and experimental lifetime at (a) C500 , (b) C300  using PM , 

d=0.394  and (c) C500 , (d) C300 using LM, d=0.596. 

 

One key issue in the critical distance method is determining the critical distance, d. Until now 

there is no effective method except searching to determine the critical distance for elasto-plastic 

 

  

  



problem. The most popular method is to determine the distance by minimizing the deviations 

between prediction and experiments. For instance, one may use the least square method to minimize 

||Np,d-Nf|| or  ||Np,l-Nf|| and to find the most appropriate distance based on the R=-1 at 500°C. It 

follows that the critical distance for the PM is 0.394 mm and 0.596mm for the LM. Generally, one 

may assume that the distance should be independent of loading ratio and temperature. 

   Figures 8(a) and 8(b) show the results for Cruse-Meyer PM model at 500°C and 300°C. The 

prediction of the Cruse-Meyer LM is documented in Fig. 8(c) and 8(d). Results confirm significant 

improvement in predictions, in comparing with Fig. 7. The critical distance concept introduces a 

new variable into the model and makes it more flexible. However, applicability of it needs more 

detailed experimental and computational efforts. From the results we can observe LM is less 

scattered than PM. 
 

6. Conclusion 

The present work shows the simple Cruse-Meyer model can be extended to multiaxial fatigue 

directly and confirms the same quality in prediction as other established multiaxial models. 

Combining it with the critical distance concept provides a reasonable prediction for notched 

specimen fatigue. However, determining the critical distance needs suitable elastoplastic FEM 

analysis. The basic assumption here is that the critical distance should be constant for the specific 

material and fatigue model which has to be verified further. Empirical determination of the critical 

distance needs to be refined. 
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